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Abstract: In the paper, the probabilistic assessment of cracking resistance of concrete flexural 

members is presented. The aim of the performed analysis was to verify an alternative formula for 

cracking resistance calculation and to compare the proposed method with two standard methods. 

The experimental investigation performed at Lublin University of technology was used to verify the 

design models. The accuracy and reliability of the calculation methods was assessed by analyzing 

the model uncertainty θ. When model uncertainty θ > 1.0 the prediction model yields a lower value 

of cracking resistance and is thus conservative, while a value of θ < 1.0 implies that the prediction 

model yields higher cracking resistance than is actually available in the structure and is thus un-

conservative. A high model uncertainty θ = 1.53 was found when the cracking resistance was 

calculated by standard method assuming a linear distribution of normal stresses over the cross 

section and taking the maximum tensile stress as the concrete axial tensile strength. When applying 

the flexural tensile concrete strength defined in Eurocode 2 instead of axial tensile strength in a 

cracking resistance formula, the model uncertainty decreased to θ = 1.15 but the model was still 

conservative. The best prediction of cracking resistance was obtained for the proposed method in 

which the influence of a size effect and fracture properties of concrete on cracking moment were 

included. In this case the model uncertainty was close to 1.0 (θ = 0.94) with a relatively small 

scatter.  
 

 

1 INTRODUCTION 

When designing civil engineering 

structures, the trend is observed to fulfill 

higher economical requirements [1]. However, 

the safety of a structure must be on the first 

place. This is of paramount importance 

especially in case of unreinforced concrete 

structures, where the nature of the failure is 

brittle. The example of structural members 

which can be designed as unreinforced 

concrete members are foundations. As a result 

of extreme weather events caused by climate 

change, such as floods and landslides, the 

ground conditions may change, which in turn 

may affect the performance of foundations and 

increase the probability of the failure. 
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In order to connect structural safety with 

economical requirements, it has become more 

common in the last years to use a reliability 

analysis of civil engineering structures and 

structural members. In the context of applying 

more rational methods in the assessment of 

civil engineering structures, the current trend 

is to verify and calibrate design procedures. 

The consequence is the refinement of 

calculations in terms of more accurate 

reliability estimates, which necessitates 

consideration of uncertainties and a 

probabilistic computation. The application of a 

complex simulation software can help to 

analyze the correctness and reliability level of 

existing design code formulas vs. newly 

proposed methods [2, 3]. 

In the paper, the probabilistic assessment of 

cracking resistance of concrete flexural 

members is presented. The aim of the analysis 

is to verify an alternative formula for cracking 

resistance calculation that reflects the size 

effect and fracture properties, and to compare 

the proposed method with standard methods of 

a cracking moment estimation. 

2 CRACKING RESISTANCE 

The calculation of cracking moment is of 

paramount importance as it decides of a 

cracking resistance and a load carrying 

capacity of unreinforced concrete members. 

When the cracking moment is calculated 

assuming a linear distribution of normal 

stresses over the cross section, where the 

maximum tensile stress is taken as the 

concrete tensile strength fctm (Equation 1) too 

low values are obtained comparing to test 

results. Experimental findings, achieved for 

instance by Słowik [4], Dąbrowski [5] and 

Knauff [6], have shown that the experimental 

cracking resistance is 1.5 ÷ 2.0 times higher 

than the cracking moment calculated based on 

the Equation 1:  

Mcr,T = Wc fctm (1) 

where: fctm – mean axial tensile strength of 

concrete, Wc=bh2/6 – section modulus, b – 

width of the cross section, h – height of the 

cross section. 

Researchers have pointed that the cracking 

resistance of concrete structural members is 

influenced by the member’s size [7-9]. In the 

European standard Eurocode 2 [10] this 

finding was included in the Equation 2 for 

calculating a flexural tensile concrete strength. 

As the consequence, the modified formula for 

the cracking resistance of flexural concrete 

member can be written as the Equation 3 

(where h is the total height of cross section in 

meters): 

fct,fl = max{fctm hfctm}.            (2) 

Mcr,EC2 = Wc flctf ,  (3) 

It has been well recognized that concrete 

exhibits size effect. Nonlinear fracture 

mechanics can capture deterministic energetic 

size effect. However, uncertainties related to 

the strength of the material indicate statistical 

size effect and the application of statistics and 

probability is required when taking into 

consideration this source of size effect [11, 

12]. The application of nonlinear fracture 

mechanics for analyzing cracking forces in 

concrete members has shown that the increase 

of cracking forces takes place when the 

member’s dimensions decreases. The size 

effect was extensively analyzed for example 

by Bažant and Pfeiffer [13], Hillerborg, et al. 

[14], Carpinteri [15]. 

Furthermore, experimental investigations 

and numerical simulations have shown that a 

more brittle character of failure can appear in 

members made of a high strength concrete 

[16]. Therefore, the size effect as well as 

fracture properties of concrete should be taken 

into account in order to correctly calculate 

cracking resistance of concrete members. The 

comprehensive approach to the issue was 

proposed in the research [14] in which several 

numerical simulations were presented on the 

development of failure crack in flexural 

concrete members. The numerical analyses 

were performed using nonlinear fracture 

mechanics approach and applying the 

nonlinear characteristic of concrete in tension 

in the post-critical phase (softening of concrete 

in tension). The coefficient  has been derived 

by performing a regression analysis of 
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calculations results which were read from 

nomograms presented in [14]. The coefficient 

characterizes the influence of concrete 

parameters and the member’s size on cracking 

resistance of concrete. Coefficient  has been 

described by two equations: 4a (when h/lch < 

0.5) and 4b (when h/lch ≥ 0.5): 

 

 = -3.68·(h/lch)3 +7.35·(h/lch)2  

– 4.81·(h/lch) + 2.48 (4a) 

 = -0.002·(h/lch)3 + 0.04··(h/lch)2  

– 0.24·(h/lch) + 1.58 (4b) 

Graphical representation of the relation 

between the coefficient  and the ratio of cross 

section height to characteristic concrete length 

lch is presented in Fig. 1. 

 

Figure 1: Coefficient  with respect to h/lch ratio. 

Coefficient  takes into account the size 

effect described by a total height of cross 

section and concrete fracture parameters like 

GF – fracture energy, Ecm – Young’s modulus 

and fctm – tensile strength of concrete which 

are summarized in one parameter – the 

characteristic concrete length lch. The 

characteristic concrete length is the basic 

parameter defined based on nonlinear fracture 

mechanics (Eq. 5) and it describes concrete 

fracture properties in a complex way.  

l
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(5) 

Based on coefficient , which takes into 

account the size effect and fracture properties 

via the characteristic concrete length, a new 

method (Equation 6) is proposed: 


crM = Wc  fctm (6) 

The reliability analysis of design models 

described by the Equations 1, 3 and 6 has been 

performed in order to verify the correctness of 

calculating cracking resistance of flexural 

concrete member. The experimental 

investigation performed at Faculty of Civil 

Engineering and Architecture, Lublin 

University of Technology by Marta Słowik 

was used for the comparative analysis. 

3 EXPERIMENTAL INVESTIGATION 

The experimental research presented 

hereafter was carried out to determine a 

cracking moment of flexural concrete 

members. Six concrete beams were tested, 

with the rectangular cross-section and the 

following dimensions: width – b = 0.15 m; 

height – h = 0.30 m; total length – L = 3.00 m; 

span – l = 2.70. 

The experiments were performed using the 

four point bent specimens and special designed 

test equipment. The stand was constructed in 

such a way as to enable the observation of the 

beams’ work in post-critical range. Beams 

were loaded by two concentrated forces, which 

were applied from bottom to top by hydraulic 

jacks. During the test, the displacement-

controlled experimental procedure was used in 

order to slow down the cracking process and to 

observe crack formation more precisely. The 

static scheme of the test specimen is shown in 

Fig. 2. During the subsequent load stages of 

the test, beam’s deflections, applied external 

forces and concrete strains were measured.  

 

Figure 2: Static scheme of tested beams. 

The beams and additional specimens for 

testing concrete parameters were made with 

the same concrete mixture. Concrete 
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parameters: concrete compressive strength fcm, 

concrete tensile strength fctm and Young’s 

modulus Ecm were tested by standard methods. 

Concrete compressive and Young’s modulus 

were tested on cylindrical specimens. Concrete 

tensile strength was tested on cubic specimens 

by splitting test fctsp and then the axial tensile 

strength was recalculated as fctm= 0.9 fctsp. 

The fracture energy GF was estimated from 

the equation proposed in the CEB-FIP Model 

Code [17]: 

7.0
cmFF fG  = 82.95 N/m  (7) 

where: F - coefficient, which depends on the 

maximum aggregate size dmax (F = 4 when 

dmax = 8 mm; F = 6 when dmax = 16 mm; 

F = 10 when dmax = 32 mm); fcm – mean 

compressive strength of concrete. 

Because of the reversed load scheme and 

the influence of the weight of the beam, the 

highest values of the bending moment were 

obtained in the sections of the applied forces. 

The destructive crack in the tested beams 

formed near the cross-section where one of the 

forces was applied. The crack always 

propagated perpendicular to the beam axis. A 

picture of the failure crack for an example 

beam is shown in Figure 3. 

   

 

Figure 3: Picture of the failure crack - an example. 

The following cracking moments were 

obtained in tested beams: 4.447 kNm, 

4.549 kNm, 5.019 kNm, 5.116 kNm, 

5.379 kNm, 5.473 kNm. The mean value of 

experimental cracking moment was 

Mcr,E = 5.00 kNm. Such results were a 

stimulation to verify it in a probabilistic way 

including models according to Equations 1, 3 

and 6. 

4 STOCHASTIC MODEL  

The multipurpose probabilistic software 

FReET has been used for statistical, sensitivity 

and reliability analysis of the design problem 

connecting with the cracking resistance of 

concrete flexural members [18,19]. When 

performing the reliability analysis, the 

parameters included in the design formulas of 

cracking resistance of concrete members were 

treated as random variables: 

1. Modulus of elasticity Ecm ; 

2. Concrete compressive strength fc; 

3. Concrete axial tensile strength fctax; 

4. Total height of the member cross section h; 

5. Width of the member cross section b; 

6. Cracking moment obtained from 

experiments Mcr,exp. 

The experimental database used in 

determining the model uncertainty was 

compiled from the experimental investigation. 

The type of the distribution and its statistical 

moments (descriptive statistics) of individual 

variable were adopted on the basis of 

experimental results. They are summarized in 

Table 1.  

Table 1: Statistical charcterestics for considered 

variables 

Variable Distri

bution 

 Mean 

value  

Standard 

deviation 

Coefficient 

of 

variation  

fc  

[MPa] 

LN  

 

27.67  2.769  0.100 

fct,ax 

[MPa] 

LN 1.472  0.1585  0.108 

Ecm 

[MPa] 

LN 22118  1927.1  0.087 

h 

[m] 

N  0.30  0.009 0.030 

b 

[m] 

N  0.15  0.0045 0.030 

Mcr,exp 

[kNm] 

LN 4.997  0.4220  0.084 

 

As it is pointed in [20] statistical 

correlations among basic random variables 

should be taken into account. Hovewer, in 

most cases, there is a lack of information on 

statistical correlation [21]. In the performed 

analysis, the statistical correlation among 
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random variables was included only according 

to concrete parameters with respect to 

previously performed tests reported in the 

literature [1, 22-24]. The correlation matrix is 

defined in Table 2.  

Table 2: Correlation matrix 

 Ecm fc fctax 

Ecm 1 0.4 0 

fc 0.4 1 0.4 

fctax 0 0.4 1 
 

Model predictions were provided by the use 

of Latin Hypercube Sampling (LHS). The 

probabilistic mean sampling scheme was 

employed to performe 30 random simulations. 

The statistical parameters were evaluatedand 

and histograms were built for all the dependent 

variables, i.e., fracture energy GF, ratio h/lch, 

experimental cracking moment R(Mcr exp), and 

cracking resistance calculated based on  

Eq. 1 – R(Mcr T)=(bh2/6) fctax,  

Eq. 3 – R(Mcr EC2)=(bh2/6) fctfl and  

Eq. 6 – R(Mcr kappa)=(bh2/6)  fctax.  

Model analysis was performed using 

prepared samples of random variables 

presented in Tab. 1 and the sumarized 

statistical results are presented in Table 3. The 

obtained probability density distributions for 

experimental cracking moment R(Mcr exp) and 

cracking moments R(Mcr T), R(Mcr EC2) and 

R(Mcr kappa) are compared in Fig. 4.  

Table 3: Statistical results 

Variable Mean 

value 

Standard 

deviation 

Coefficient 

of 

variation 

GF  

[N/m] 

102.08 7.226 0.071 

h/lch  

[-] 

0.29 0.067 0.229 

R(Mcr exp)  

[kNm] 

5.00 0.427 0.085 

R(Mcr T)  

[kNm] 

3.31 0.414 0.125 

R(Mcr EC2) 

[kNm] 

4.31 0.525 0.122 

R(Mcr kappa) 

[kNm] 

5.36 0.491 0.091 

 

 

Figure 4: The comparison of probability density 

distribution for predicted cracking moments. 

5 MODEL UNCERTAINTIES 

ASESSMENT 

Three types of uncertainty are defined in 

Probabilistic Model Code [25]: 

- intrinsic physical or mechanical uncertainty,  

- statistical uncertainty, when the design 

decisions are based on a small sample of 

observations or when there are other similar 

conditions, 

- model uncertainties.  

Model uncertainties are not only inherent in 

the design basic variables, but also arise due to 

some uncertainties associated with the 

prediction model itself. Therefore, the model is 

also characterized by its parameters which 

should be considered as random variables. The 

model uncertainty reflecting the difference 

between experiment and simulation may be 

described by the ratio θi:  

𝜃i = Rexp,i/ Rcal,i (8) 

where: Rexp,i is the structural resistance 

obtained from experiment i; Rcal,i is the 

structural resistance obtained from design 

model of experiment i. 

The determination of model uncertainty is 

typically conducted through a statistical 

approach, whereby the responses derived from 

a set of experimental measurements are 

compared with the predictions of the 

computational model. The obtained results are 

then statistically calculated and the statistical 

parameters of the model uncertainty, i.e. the 

mean value μθ and coefficient of variation Vθ, 

are obtained. In line with code 

recommendations, the probability distribution 

is considered to be a two-parameter lognormal 

distribution. 
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The analysis has been determined to 

calculate the statistics of the model uncertainty 

described by the ratio θ and its variability, 

associated with the prediction models for 

cracking resistance for concrete members. 

Characterization of the model uncertainty was 

achieved by comparing ultimate cracking 

resistance obtained from experimental tests on 

representative members to the predictions of 

each of the design models. In effect, the 

statistics of three separate cases of the model 

uncertainty were characterized: 

θ1(R) = R(Mcr exp)/R(Mcr T) based on Eq. 1,  

θ2(R) = R(Mcr exp)/R(Mcr EC2) based on Eq. 3.  

θ3(R) = R(Mcr exp)/R(Mcr kappa) based on Eq. 6. 

The statistical parameters for model 

uncertainties θi are presented in Tab. 4 (mean 

value θ, standard deviation sθ, coefficient of 

variation Vθ) and two-parameter lognormal 

probability density distributions for model 

uncertainties are sumarized in Fig. 5. 

Table 4: Statistical parameters for model 

uncertainity 

Result name θ sθ Vθ 

R(Mcr exp)/R(Mcr T) 1.532 0.244 0.199 

R(Mcr exp)/R(Mcr EC2) 1.178 0.185 0.157 

R(Mcr exp)/R(Mcr kappa) 0.940 0.120 0.128 

 

Figure 5: Probability density distributions for model 

uncertinties. 

The study here implies to use following 

random variable as model uncertainty related 

to prediction formula:  

1. TcrM , =Wc fctax: θ1 = 1.532, Vθ1= 0.199, 

2. 2,ECcrM =Wc flctf , : θ2 = 1.178, Vθ2 = 0.157, 

3. kappacrM , =Wc  fctax: θ3 = 0.940, Vθ3 = 0.128. 

A value of θ > 1.0 points that the prediction 

model yields a lower value of cracking 

resistance and is thus conservative, while a 

value of θ < 1.0 implies that the prediction 

model yields higher cracking resistance than is 

actually available in the structure and is thus 

un-conservative. 

6 CONCLUSIONS 

The accuracy and reliability of the 

calculation method can be assessed by 

analyzing the model uncertainty. 

The model uncertainty 

θ1(R) = R(Mcr exp)/R(Mcr T), determined for 

cracking resistance based on the formula in 

which the axial tensile strength was applied 

(Eq.1), was the highest and a mean value 

reached θ1 = 1.53 with a relatively high 

coefficient of variation Vθ1 = 0.20. The model 

uncertainty θ2(R) = R(Mcr exp)/R(Mcr EC2) 

decreased when applying flexural tensile 

concrete strength fct,fl instead of fctax (Eq. 3) 

and the mean value was θ2 = 1.18. The 

coefficient of variation was lower too 

Vθ2 = 0.16. Although both formulas R(Mcr T) 

and R(Mcr EC2) appeared to be conservative but 

it has been observed that when using fct,fl 

described by Eq. 2, the size effect can be taken 

into account and a better prediction of 

cracking resistance has been obtained. 

In case of using the coefficient Eq. 6) 
the mean value of model uncertainty 

θ3(R) = R(Mcr exp)/R(Mcr kappa) was θ3=0.94 

and a lower coefficient of variation than in 

case 1 and 2 was noticed Vθ3 = 0.13. Although 

the mean value of model uncertainty θ3(R) was 

lower than 1.0, which suggests the model 

R(Mcr kappa) to be un-conservative, but was 

close to 1.0 with a relatively small scatter. 

It can be concluded that cracking resistance 

calculation for unreinforced concrete members 

based on the new formula with the inclusion of 

the coefficient  showed a better agreement 

with test data comparing to standard design 

methods. When using the coefficient  both 

the influence of the size of the member and the 

impact of fracture properties of concrete on 

cracking resistance can be taken into account. 

The performed analysis brought the 

promising results on a good prediction of 

cracking resistance of concrete members using 

the new model R(Mcr kappa). Further analyses 
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are necessary to verify the model for members 

of different sizes and for concretes of different 

strengths. 
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