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Abstract. This paper provides a concise introduction to the nonlocal theories of Dual-Horizon Peri-
dynamics (DH-PD) and the Nonlocal Operator Method (NOM), including their primary concepts and
fundamental governing equations. In addition, a dual-horizon bond-based peridynamics equipped
with variational damage is derived. A numerical example is presented to explore their advantages in
crack simulation.

1 INTRODUCTION
Peridynamics (PD) is a nonlocal solid me-

chanics theory introduced by Silling in year
2000, focusing on solving fracture problems
[1, 2]. Its core feature is nonlocality, where the
state of a material point depends on the infor-
mation of other material points within a certain
neighborhood. This nonlocal nature allows ex-
plicit modeling of direct interactions between
material points, enabling intuitive simulation of
cracks by cutting these interactions.

Since its inception, PD has assumed constant
nonlocality for material points to ensure sym-
metric interactions. However, PD can also be
regarded as a meshless solid mechanics compu-
tational method. It is well known that to im-
prove simulation accuracy while reducing com-
putational cost, meshless methods and finite
element methods (FEM) can use non-uniform
discretization, with dense meshes in critical re-

gions and sparse meshes elsewhere. Similarly,
we hope PD can adopt non-uniform discretiza-
tion for material points. However, traditional
PD formulations cannot achieve this efficiently.

To overcome this limitation, the Dual-
Horizon Peridynamics (DH-PD) formulation
emerged. A key feature of DH-PD is the non-
uniform discretization of material points in the
solid domain, where the size of the nonlocal
neighborhood of a material point is defined in-
dividually [3, 4]. This improves computational
efficiency and provides a theoretical basis for
multiscale analysis in PD. Despite being ini-
tially derived from Newton’s Second Law as a
nonlocal analog, DH-PD can also be derived
variationally, where the dual-horizon concept
naturally arises [5]. DH-PD has been applied
widely and verified by numerous scholars from
various perspectives.

As a generalization of PD, DH-PD is com-
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patible with all PD formulations (bond-based
PD, state-based PD, and non-ordinary state-
based PD). However, DH-PD is limited to solid
domains, and the concept of nonlocality has not
been fully explored. A core concept in DH-PD
is the nonlocal gradient. From the perspective
of partial differential operators, PD mainly fo-
cuses on nonlocal gradients. Many other partial
differential operators, such as curl, divergence,
and higher-order gradients, exist mathemati-
cally. The Nonlocal Operator Method (NOM)
has been proposed as an extension of DH-PD,
systematically defining various orders of non-
local derivatives and deriving nonlocal integral
equations using classical variational principles
[6–8].

The remainder of the paper is organized as
follows. Section 2 briefly reviews the theories
and concepts of DH-PD. In Section 3, an out-
line of nonlocal operator method is described.
In Section 4, a numerical example for the sim-
ulation of dynamic fractures is provided. Some
outlooks are draw in Section 5.

2 DUAL-HORIZON PERIDYNAMICS
The idea of DH-PD is the non-uniform non-

locality, where the horizon domain of each ma-
terial point depends on itself and need not match
the sizes of other points in domain [3, 4]. This
is akin to the non-uniform discretization in nu-
merical methods like FEM and meshless meth-
ods. The fundamental principles underlying
dual-horizon peridynamics pertain to the no-
tions of horizon domain and dual-horizon do-
main.

Horizon domain of x is a finite-size neigh-
borhood of material point x.

Hx = {x′∣∣||x′ − x|| ≤ δ} (1)

where δ is the radius of the neighborhood.
Dual-horizon domain is defined as a union

of points whose horizons include x, denoted by

H ′
x = {x′∣∣x ∈ Hx′} (2)

The definition of dual-horizon implies x′ ∈
H ′

x ↔ x ∈ Hx′ .

According to reference [2], the governing
equations of conventional peridynamics are

∫
Hx

(fxx′ − fx′x) dVx′ + b = ρüx (3)

where fxx′ is the bond-force density between
material point x and x′. The body force density
is represented by the symbol b, while the den-
sity is denoted by ρ. The displacement field is
denoted by the symbol u.

With the notation of dual-horizon domain
[4], the governing equations of dual-horizon
peridynamics is

∫
Hx

fxx′ dVx′ −
∫
H′

x

fx′x dVx′ + b = ρüx

(4)

The dual-horizon peridynamics is a straightfor-
ward adaptation of the traditional peridynamics.
It facilitates the use of peridynamics for non-
uniform horizons in all material points. The
present configuration bears resemblance to the
non-uniform discretization technique employed
in finite element methods, thereby leading to a
substantial enhancement in computational effi-
cacy.

The dual-horizon peridynamics encom-
passes the conventional constant-horizon peri-
dynamics as a specific instance. The table
below outlines a comparison between peridy-
namics and dual-horizon peridynamics. The
three peridynamics models under consideration
are bond-based peridynamics (BB-PD), state-
based peridynamics (OSB-PD), and nonordi-
nary state-based peridynamics (NOSB-PD),
each with their respective abbreviations.
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Figure 1: From constant horizon peridynamics to dual-horizon peridynamics.

Table 1: Comparison of constant horizon peridynamics and dual-horizon peridynamics.

Model Peridynamics Dual-horizon peridynamics
Equation

∫
Hx

(fx′−fx′x) dVx′ + b = ρüx

∫
Hx

fxx′ dVx′−
∫
H′

x
fx′x dVx′ + b = ρüx

BB-PD fxx′ − fx′x = csxx′n,∀x′ ∈ Hx
fxx′ = C (δx) sxx′n, ∀x′ ∈ Hx

fx′x = C (δx′) sxx′ (−n), ∀x′ ∈ H ′
x

OSB-PD
fxx′ = t⟨ξ⟩n
fx′x = t′⟨−ξ⟩(−n),∀x′ ∈ Hx

fxx′ = t⟨ξ⟩n,∀x′ ∈ Hx

fx′x = t′⟨−ξ⟩(−n),∀x′ ∈ H ′
x

NOSB-PD
fxx′ = T [x′ − x],
fx′x = T ′[x− x′], ∀x′ ∈ Hx

fxx′ = T [x′ − x],∀x′ ∈ Hx

fx′x = T ′[x− x′], ∀x′ ∈ H ′
x

2.1 Bond-based peridynamics embedded
with damage

A distinctive feature of nonlocal models is
the flexibility in describing cracks. Based on
certain fracture criteria, interactions within the
nonlocal neighborhood can be easily severed.
In traditional local models, equations are de-
fined at a point, and since points lack physi-
cal dimensions, interactions with surrounding
points cannot be quantitatively severed. Non-
local models, however, introduce an integra-
tion domain that explicitly represents interac-
tions between material points. Interactions with
physical entities can be easily modified or sev-
ered. For example, in PD, the most common
fracture criterion is the maximum tensile strain
criterion. When the strain between material
points exceeds a specified value, the bond is
permanently cut. However, bond breaking has
side effects, such as computational instability
due to conditional judgments. These can be mit-
igated mathematically by calculating the dam-

age for strain energy density of a bond.
The strain energy carried on a bond xij is

ϕij := ϕ(uij,xij) =
1
2
Cis

2
ij, sij =

∥xij+uij∥
∥xij∥ − 1

(5)

where Ci is the coefficient of bond stretch de-
fined in horizon domain Hxi

, uij := uj −ui is
the relative displacement. Bond damage occurs
in tensile deformation and no damage happens
for compressive deformation. Let ⟨sij⟩± be de-
fined as

⟨sij⟩± =
sij ± |sij|

2
(6)

The “positive”/”negative” decomposition of
bond strain energy is defined as

ϕ±
ij =

1

2
Ci⟨sij⟩2± (7)

Based on the variational damage model [9], the
damage of bond xij can be defined as

dij := d(xij) =
ϕ+
ij

ϕ+
ij +Gc/ℓ

. (8)
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where Gc/ℓ is the critical energy density carried
by a bond.

In order to satisfy the non-reversibility of
damage evolution, we introduce the histori-
cal maximal “positive” strain energy density at
point x in the time interval [0, T ], i.e.

Hij := max
t∈[0,T ]

ϕ+
ij(sij(x, t)). (9)

Then the damage state for bond xij can be
rewritten as

dij := d(xij) =
Hij

Hij +Gc/ℓ
. (10)

Therefore, the bond force embedded with bond
damage in the governing equation can be ex-
pressed as

f d
ij = Ci

(
⟨sij⟩+

(1+Hijℓ/Gc)2
+ ⟨sij⟩−

)
xij+uij

∥xij+uij∥
(11)

The governing equation of bond-based peri-
dynamics embedded with bond damage be-
comes

ρüi =

∫
Hxi

f d
ijdVj −

∫
H′

xi

f d
jidVj + b (12)

dij =
Hij

Hij +Gc/ℓ
, di =

∫
Hxi

dij dVj∫
Hxi

1 dVj

(13)

In above equations, the damage depends solely
on the historical energy density of bonds and the
bond-cutting process is avoided.

2.2 Force accumulation in dual-horizon PD
Despite the introduction of the dual-horizon,

the numerical implementation did not incur any
additional expenses. The dual-horizon bond
forces can be automatically accumulated during
the computation of forces from the horizons of
other material points. This concept is demon-
strated through a straightforward illustration.

Take the particles in Fig.1(b) for an ex-
ample, Hx0 = {x1,x2,x4,x6} , H ′

x0
=

{x1,x2,x3,x4}. The bond force density on a
bond between two material points xi and xj

is denoted by fij . The symbol ∆Vi represents
the volume of a specific material point denoted
by xi. According to the idea of dual-horizon,
the process of forces summation is listed as fol-
lows:

Internal forces from Hx0:

• Add f01∆V0∆V1 to x0, add reaction
force −f01∆V0∆V1 to x1

• Add f02∆V0∆V2 to x0, add reaction
force −f02∆V0∆V2 to x2

• Add f04∆V0∆V4 to x0, add reaction
force −f04∆V0∆V4 to x4

• Add f06∆V0∆V6 to x0, add reaction
force −f06∆V0∆V6 to x6

Internal forces from H ′
x0

are calculated when
calculating bond forces in Hx1 , Hx2 , Hx3 , Hx4:

• In Hx1 , add f10∆V1∆V0 to x1, add reac-
tion force −f10∆V1∆V0 to x0

• In Hx2 , add f20∆V2∆V0 to x2, add reac-
tion force −f20∆V2∆V0 to x0

• In Hx3 , add f30∆V3∆V0 to x3, add reac-
tion force −f30∆V3∆V0 to x0

• In Hx4 , add f40∆V4∆V0 to x4, add reac-
tion force −f40∆V4∆V0 to x0

3 OUTLINE OF NONLOCAL OPERA-
TOR METHOD

NOM generalizes DH-PD, allowing nonlo-
cal models to incorporate arbitrary nonlocal
derivatives [8]. In NOM, the support domain
is used, which has the same meaning of horizon
domain or the nonlocal neighborhood of a ma-
terial point. The nonlocal derivatives of a field
u at point xi based on support domain Si in d-
dimensions with highest derivative order up to
n can be written as

∂̃αui := Ki ·
∫
Si

w(r)ph
juij dVj (14)

where ∂̃αui is a list of nonlocal derivatives of
different orders, ph

j is a list of polynomials de-
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fined as

∂̃αui = (ui,0...1, . . . , ui,n1...nd
, . . . , ui,n...0)

T

(15)

ph
j =

(
rd
h
, . . . ,

rn1
1 . . . rnd

d

hn1+...+nd
, . . . ,

rn1
hn

)T

(16)

and Ki is the generalized shape tensor defined
by

Ki := H−1
i

(∫
Si

w(r)ph
j ⊗

(
ph
j

)T
dVj

)−1

(17)

The additional notations are defined as

r = (r1 , . . . , rd) = (xj1 − xi1, . . . , xjd − xid)

ui,n1...nd
=

∂n1+...+ndui

∂xn1
i1 . . . ∂xnd

id

, uij = uj − ui,

Hi =diag

[
hi, . . . ,

hn1+...+nd
i

n1! . . . nd!
, . . . ,

hn
i

n!

]

αn
d = {(n1, . . . , nd) |1 ≤

d∑
i=1

ni ≤ n,

ni ∈ {0, 1, 2, ...}, 1 ≤ i ≤ d}

These high-order nonlocal derivatives are ob-
tained from the Taylor expansion of a function,
more details can be found in Ref [7, 8]. Substi-
tuting high-order nonlocal derivatives for tradi-
tional derivatives in energy functionals and ap-
plying variational principles yields various non-
local models, such as gradient elasticity, nonlo-
cal plate theories, and nonlocal diffusion equa-
tions. For more details, refer to Reference [5].

4 NUMERICAL EXAMPLE: FRAGMEN-
TATION SIMULTATION

DH-PD and NOM are compatible with varia-
tional principles, enabling the use of explicit or
implicit algorithms from traditional numerical
methods. Here, we present an example solved
by explicit time algorithms.

P(t)=p₀ exp(-t/t₀)
(p₀=400 MPa, t₀=100 μs)

160 mm
300 mm

Internal 
pressure

P(t)

Figure 2: Geometry and boundary condition of the
thick cylinder subjected to internal pressure P (t).

The fragmentation simulation examines a
complex numerical model of a thick cylin-
der subjected to internal pressure, as illus-
trated in Figure 2. The internal surface pres-
sure is applied as P (t) = p0 exp(− t

t0
), where

t0 = 100µs and p0 = 400MPa. The ma-
terial properties used in the simulation are:
E = 210GPa, µ = 0.3, Gc = 2 ×
104 J/m2, ρ = 7850 kg/m3. To introduce
asymmetry in the specimen, the Young’s mod-
ulus of each material point, E, is perturbed by
±5% [10].

The model consists of 196,556 material
points, with a horizon selected as ℓ = 3.01∆x,
where ∆x = 0.5mm represents the spacing be-
tween material points. The simulation spans a
total duration of 100µs with a fixed time step of
t = 0.1µs. The crack propagation at different
times is depicted in Figure 3. During loading,
at approximately t ≈ 43.6µs, cracks begin to
initiate from the inner surface of the cylinder.
Some of these cracks are arrested, while others
propagate and branch outward until they reach
the external surface. Additional cracks develop
due to the complex interactions of stress waves
within the solid.
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(a) t = 43.6µs (b) t = 50.7µs

(c) t = 59.3µs (d) t = 87.5µs

Figure 3: Crack propagation in thick cylinder subjected to internal pressure boundary at different steps.

5 CONCLUSION
This paper primarily reviews DH-PD and

NOM, introducing their main concepts and fea-
tures. Due to their compatibility with traditional
variational principles, NOM can solve a wide
range of non-conventional problems as well as
conventional problems. Interested readers can
refer to recent relevant literature.
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