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Abstract: Micromechanical and time dependent properties of cement paste can be predicted based 
on the microstructure by using analytical or numerical models. Herein, we propose an alternative 
approach for predicting the creep modulus of cement paste based on deep convolutional neural 
network (DCNN). The DCNN is trained using numerical simulation data obtained by the microscale 
lattice model, resulting in a database with more than 18000 samples. Then, 3 different DCNN 
architectures are built to learn from (part of) the database. Finally, the accuracy of DCNN 
prediction is tested on unseen samples. The proposed DCNN architectures can achieve excellent 
accuracy on the testing set, with the R2 higher than 0.95. Furthermore, the distribution of creep 
moduli predicted by the DCNNs coincides with the original dataset. Further analyses of the feature 
maps show that the DCNNs can correctly capture the local importance of different microstructural 
phases on the predicted creep moduli. Therefore, it was concluded that a well-trained DCNN allows 
prediction of creep moduli based on microstructural images as input, which is computationally 
much more efficient compared to image segmentation and numerical simulation methods 
commonly used today. Of course, computational demands for training the network may be 
significant, but are needed in principle only once. 

1 INTRODUCTION 
In recent years, several investigations have 

been performed on the creep of hardened 
cement paste at the microscale, including the 
intrinsic creep properties of low- and high-
density C-S-H [1]. Recently, the authors [2,3] 
proposed a method for characterizing the 
viscoelastic properties of hardened cement 
paste using micro-cantilever testing. Based on 
the experimental observations and the 
literature, the authors further developed am 
micro-scale lattice model for simulating the 
time dependent deformation of cement paste 
under constant load [4]. However, the model is 

relatively computationally expensive. Herein, 
we explore an alternative approach- the use of 
deep convolutional neural networks (DCNNs) 
– for predicting the viscoelastic properties of
hardened cement paste.

DCNNs have been broadly used in the 
context of structural health monitoring and 
image segmentation of cracks in concrete. 
Herein, we use the previously developed 
microscale lattice model for creep prediction 
to create a database of creep strain curves 
based on 18,920 microstructures derived from 
X-ray computed tomography scans. Then, we
train the DCNNs using this database. Finally,
we evaluate the performance of the DCNNs
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predictions when using unseen data. 

2 MICROSCALE LATTICE CREEP 
MODEL 

As with any data-driven approach, the 
performance of DCNN strongly depends on 
the size and the accuracy of training and 
testing data. Herein, we use the experimentally 
validated micro-scale lattice model to generate 
a database of creep moduli of cement pastes 
with different microstructure. First, 18,920 
XCT images of the size 200x200 μm are 
segmented to generate the corresponding 
lattice meshes, which consist of 4 phases: 
high-density CSH (HD-CSH), low-density 
CSH (LD-CSH), unhydrated particles and 
pores. Then, viscoelastic deformation of the 
microstructure is calculated by the model, and 
the creep compliance curve is fitted according 
to power function law. Based on the curve, the 
creep modulus of different microstructures is 
derived, which is used to form the training 
database for the DCNNs. 

To create a database of microstructures, 
XCT was used to scan 3 micro-cantilever 
beams of the size 1650x300x300 μm. From the 
scans, 9460 slices of 200x200 μm were 
cropped. The fabrication process of the micro-
cantilever beams is described elsewhere [2,3]. 
Afterwards, each image is segmented into four 
phases (LD-CSH, HD-CSH, pores, unhydrated 
particles) according to the grayscale 
histogram, using the procedure described in 
[4]. 

The segmented microstructures provided 
the input for lattice modelling. Mapping of the 
segmented image onto a random lattice mesh 
is schematically shown in Figure. 

The short-term creep behavior of cement 
paste is simulated under uniaxial compression 
using a 2D model for computational reasons. 
Local properties of different phases, including 
the tensile strength fi, elastic modulus E and 
creep modulus C are derived from the authors’ 
previous testing results (Table 1). 

Figure 1: Mapping	of	an	irregular	lattice	network	
onto	a	segmented	microstructure.		

Table 1: Local properties of different phases 

Phase ft (MPa) E (GPa) C (GPa) 
Uhydrated 
cement 

614.7 84.2 - 

LD CSH 52.2 21.3 670 
HD CSH 82.8 26.4 990 

With the boundary conditions and local 
material properties settled, an elastic 
calculation is firstly performed to get the 
initial mechanical response of the 
microstructure to the constant load. During the 
simulation, beam elements that meet the 
maximum stress criterion are removed from 
the mesh, as commonly done in the Delft 
lattice model and described elsewhere.  

After the initial mechanical response of the 
microstructure to the immediate constant load 
is calculated, the creep calculations are 
conducted using an incremental local force 
method [4]. In each following step, a local 
force is calculated based on the local 
mechanical response of each node (calculated 
in first step) to mimic the short-term creep 
effect. First, the creep compliance function of 
CSH is expressed as: 

(1) 

In which C(t, t0) is the creep compliance at 
time t when loaded at time t0; Δt is the time 
interval used in the calculation, which is 1 s in 
this study; Ec is the creep modulus of the CSH 
phases (Table 1); β is a constant which equals 
to 0.251 according to [5]. Then, based on the 
Euler’s method, the incremental creep strain at 
each time step can be calculated as: 
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(2) 
 

in which εicr is the creep strain at i-th step; σi is 
the local stress. Thereby, the local creep strain 
of each beam is dependent on the local stress 
distribution, which is converted to local force 
[4]. Based on the methods introduced above, 
the short-term creep behavior of a specific 
microstructure of cement paste can be 
calculated. For full implementation of the 
model, the reader is referred to our earlier 
work [4]. By fitting the calculated creep 
compliance curves with Eq. (1), the creep 
modulus can be derived. The fitted exponent β 
equals to 0.4285 and remains constant for all 
specimens. Therefore, we use only a single 
parameter (i.e., the creep modulus) to 
characterize the creep behavior of a specific 
cement paste microstructure. 

3 DEEP CONVOLUTIONAL NEURAL 
NETWORK (DCNN) 

Based on the microscale lattice creep 
model, the database for training the DCNNs 
can be produced. Data derived from 18,920 
virtual specimens will be used to train a 
DCNN. To increase the number of data points, 
data augmentation is used.  

By rotating the input microstructure by 90 
degrees and running the lattice creep model 
with the same boundary condition, different 
creep behaviors will be derived. With the 9460 
XCT images of different microstructure, this 
results in 18,920 sets of data in this database. 
Each data set includes a pair of an XCT image 
and a corresponding creep modulus. 

3.1 DCNN architecture 
Three kinds of DCNN architectures are 

tested: with 1 single convolutional layer, 2-
stack consecutive convolutional layers, and 3-
stack consecutive convolutional layers will be 
adopted, which are named as DCNN-1, 
DCNN-2 and DCNN-3, respectively. The 
DCNN is formulated by the following 6 types 
of layers: convolutional layer, max pooling 
layer, ReLU activation layer, global pooling 
layer, fully connected dense layer and linear 

activation layer. First, the input layer receives 
a grayscale XCT image representing a specific 
microstructure. Then, the image is passed 
through a series of consecutive convolutional 
layers and processed by a ReLU activation 
function and a max pooling layer. 
Subsequently, the stacked feature maps 
produced by the convolutional layers will be 
flattened by a global pooling layer and 
transferred into a 512*1 vector. The vector 
will then be passed through fully connected 
dense layers and finally output a scalar, which 
is the creep modulus that can describe the 
creep behavior of the input microstructure 
under axial compression. A schematic 
description and parameters of the DCNN’s can 
be found in [6]. 

3.2 Training configuration, data 
preprocessing, and optimization 

The training of DCNN can be conducted by 
importing the database into the designed 
network architecture. The three DCNN 
configurations will be compared in terms of 
performance. Before training starts, the 
database will be shuffled and grouped into 3 
sets: a training set, a validation set and a 
testing set following the proportion ratio 6.4: 
1.6: 2. Thus, there are 12,108, 3028 and 3784 
samples in the training, validation and testing 
set, respectively. Then, the data of creep 
modulus in training set will be standardized by 
its max and min value to make sure the range 
of each sample point lie in the range of (0,1). 
Note that the standardization should only be 
conducted within the training set and cannot 
be extended to the testing set, since the 
statistical information of the testing set should 
be totally isolated from training set. 

During the training process, the weights and 
biases of the filters and dense networks are 
updated to optimize the prediction 
performance on training set. Mean squared 
error is adopted as the loss function. Then, by 
a gradient descent algorithm, the weights and 
filters are updated to minimize the loss 
function through backpropagation of error. In 
this study, the Adam algorithm is used for 
optimization. 
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4 RESULTS AND DISCUSSION 

4.1 Metrics and performance 
Three metrics are used to evaluate the 

performance of the DCNNs in training, 
validation and testing set, which are Mean 
Squared Error (MSE), Mean Absolute Error 
(MAE) and Coefficient of Determination (R2). 
Their definitions can be found in general 
machine learning literature. 

In the training process, MSE is adopted as 
the loss function that is used in gradient 
descent, and R2 is used as the metrics for 
adjusting learning rate (see [6] for details). 
Therefore, the MSE and R2 are used to 
describe the training history. In the training 
and validation set, the MSE and R2 of the 3 
DCNNs are shown in Fig. 2 (a) ~ (c), and the 
learning rate history are shown in Fig. 2 (d). 
From Fig. 2, one can see that the 3 DCNNs all 
achieve high prediction performance in the 
training process. On the training and validation 
set, the R2 of all the DCNNs are above 0.99 
and 0.95, respectively, which indicates low 
risk of overfitting since the prediction 
performance of training and validation set are 
similar. Furthermore, the results also prove the 
adaptive adjustment of learning rate are 
effective for the training process of DCNNs: 
for DCNN-1, DCNN- 2 and DCNN-3, the 
learning rate decreases by 96.5%, 97.6%, and 
97.8% in 200 epochs, respectively. However, 
comparing the difference of DCNNs, one can 
find the importance of having consecutive 
convolutional layers. With the 3-stack 
convolutional layers, DCNN-3 gives the best 
prediction while maintaining the best 
numerical stability since the first iterations. 
Besides, the fast decrease of learning rate of 
DCNN-3 also indicates that better numerical 
stability is achieved. Comparing DCNN-1 with 
the others, more distinguished effects of 
consecutive convolutional layers on both 
prediction performance and numerical stability 
can also be found. 

After the training process is finished, the 
DCNNs are tested by the 3784 data samples, 
which have been kept isolated since the 
beginning. The testing results of the DCNNs 

are shown in Fig. 3. The testing results of 
different DCNNs are consistent with that of 
the training and validation set: All the 3 
DCNNs can achieve high accuracy over most 
samples within the unseen testing set. And 
more consecutive convolutional layers can 
improve the testing accuracy expressed by R2, 
MSE and MAE. 
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Figure 2: Training history 

	

Figure 3: Testing results	

4.2 Correlation with microstructural 
parameters 

To further validate the capabilities of the 
DCNN, the correlation between the 
microstructural parameters and prediction 
results in the testing set are compared. 
Simulation results showed the most significant 
microstructure parameters that influence the 
creep modulus are LD-CSH ratio, Porosity and 
Unhydrated Cement Ratio. Therefore, the 
correlation between these parameters and 
creep modulus predicted by the DCNNs are 
shown in Fig. 4. By comparison, the 
distribution of creep modulus predicted by the 
DCNNs highly coincides with the original 
distribution of Lattice modelling results in 
testing set. 

It can also be shown that the DCNNs can 
capture the feature of an input microstructure 
and give its prediction. As mentioned in [6], 
the local features of the local feature of the 
microstructure are extracted by the filters to 
form a new input image block (a 3D matrix), 
which are called feature maps and are passed 
to the subsequent layers after ReLU activation 
and max pooling. Therefore, the feature maps 
indicate the local features identified by 
different convolutional layers. Taking DCNN-
3 as an example, the feature maps produced at 
the end of every consecutive convolutional 
layer are shown in Fig. 5. Note that for each 
consecutive convolution layer, a stack of 
feature maps is produced. The results shown in 
Fig. 5 are the summation of these feature maps 
along its channel. The DCNNs keeps 
extracting the features and downscaling the 
size of feature maps. At the first layers, only 
the finer local features are extracted and 
compressed into smaller feature maps. While 
when it goes deeper into the DCNN, more 
details are compressed into smaller number of 
pixels and therefore such feature maps become 
highly abstract and uninterpretable. 
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Figure 4: Correlation between predicted creep modulus and microstructural parameters 

 

Figure 5: Feature maps extracted from DCNN-3 
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5 GENERAL DISCUSSION 
We have shown that the DCNNs can 

accurately mimic the microscale lattice creep 
model. By comparison, the DCNNs save the 
computational resources for image 
segmentation and multiple incremental 
iterations of the microscale lattice creep model 
and directly predict the creep modulus with the 
input of a microstructure represented by a raw 
XCT image. The capabilities of extracting and 
integrating local features from highly 
heterogeneous microstructures make DCNN a 
powerful tool in predicting the short-term 
creep of cement paste. Moreover, such 
capabilities indicate strong potential of DCNN 
in other computationally- intensive tasks for 
homogenization of heterogenous materials. 

However, it must be emphasized that the 
performance of the DCNNs highly depends on 
the microscale lattice creep model, which 
generated the datasets for the whole training 
process. The applications of DCNNs of this 
study is limited to the scenario of hardened 
four-phase cement paste under immediate 
axial compression. If any other phases (e.g., 
CH) of cement paste play an essential role, or 
other boundary conditions are to be 
considered, the microscale lattice creep model 
will need to be adjusted first. After new 
datasets that reflect the influence of new 
phases or different boundaries are generated, 
the DCNNs can be retrained to gain accuracy 
on the new tasks. If the changes of the 
microscale lattice creep model are minor, then 
transfer learning can be applied in this process. 
In this case, only parts of the DCNN network 
must be adjusted to gain good accuracy for 
new datasets, which not only saves 
computational resources in training process 
but also tends to gain higher accuracy. 

6 CONCLUSIONS 
In this study, we built a database that 

contains 18,920 microstructures and their 
corresponding creep moduli using an 
experimentally- validated microscale lattice 
model for short-term creep. Then, DCNNs 
with different numbers of consecutive 
convolutional layers are established to predict 

the creep modulus given the microstructure as 
input. Finally, the distribution of creep 
modulus predicted by DCNNs and the lattice 
model are compared, and the local importance 
of microstructure are analyzed based on the 
output of feature maps. Through this study, the 
following conclusions can be drawn: 

- The modelling results of 18,920 
microstructures show that the adopted 
microscale lattice model captures well 
the correlations between the creep 
behaviors and microstructural 
parameters, 

- Due to the amplification of receptive 
field, the consecutive convolution 
layers can promote the prediction 
accuracy of DCNNs and meanwhile 
maintain both the numerical stability. 

- All the DCNNs adopted in this study 
can achieve high accuracy in predicting 
the creep modulus of unseen 
microstructure, with the values of R2 
all above 0.96. Moreover, the 
correlation between creep modulus 
predicted by the DCNNs and 
microstructural parameters is 
consistent with that of the original 
database. 
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