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IN CONCRETE 

elastic 
•• UJL.JJLll'-''-" to concrete Trr>r•T>~re>. 

paper an overview is given most of these lattices. A UJl_.,, .. ~,,~~··~ 
fracture in a single edge notched (SEN) specimen, is used to l'rn'YlnlJlrP> 

behaviour of the various lattice types. A remeshing procedure 
been developed recently will discussed as well. Next to 
of the tensile test, a new splitting experiment and a shear test is ...,,.._ .... ..,.Jl ..... '" ..... '"" 

this remeshing technique. 
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first to propose 
Because of ......................... ..... 

a square 
ron.~-. l"'rC>TCl> because of the JLLJLLUJ.JU.U.L'-''JLI. 

changed to a triangular 
can be by varying the cross sectional 

Heterogeneity of the lattice is already available when a 
........ u .... '"' ........... , • .._, ................... ,., .. .., ..... is assigned to the of the beams, as shown Fig . 

....... ...,_JlJ!.JL ... U.._ .. ,L ... , 1992). a regular triangular lattice (Fig. 
to be implemented separately (Schlangen, 

................. ..., ............... structure has to be simulated on of 
lattice, is a method will be discussed in this paper. 
Through years several (triangular) lattice types have been applied for 

simulating cracking of concrete under mode I. Applications are for example 
.._,,,.,,,..,,.ll ............ """"' ...... (1993), Schlangen (1995), Van Mier & Vervuurt (1994) 

............. Jl"""'"' types this 
an element the finite ...., ... ...,J", .. ..., ......... 

spite of 
~ ....... ~L·~ behaviour of lattice elements, 
....... Jl ................. The failure mechanism of crack 

is very realistically 
... Jl ... .., .... ...., .... Jl..,.Jl structure is projected on 

examples be given an uniaxial test simulated 
.. u.u.l .. H.,,,"" types. Regular as as random triangular lattices are 

heterogeneity of concrete finite VJlVJLJl .............. .. 

Fig. 1. Beam-lattice models. (a) regular square lattice, (b) regular triangu­
lar lattice and ( c) random triangular lattice 
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model, several methods are given. In section 4 also some applications 
are given of specimens loaded under biaxial tension/shear after Nooru­
Mohamed (1992) and a splitting test which is presented in this proceedings 
(Vervuurt & Van Mier, 1995). Further simulations of the tensile/shear 
experiments have been carried out, and are presented in this proceedings by 
Schlangen (1995). 

2 Lattice models including heterogeneity 

2.1 Regular lattice 
The regular triangular lattice as shown in Fig. 1 b acts homogeneous no 
heterogeneity is implemented separately. A rather simple way to achieve 
this is by assigning the beams with a random strength and stiffness. JL.J'-J'U'A. .... ,U.JI. .... 

at the structure of the material, it seems more realistic to use a (generated or 
scanned) grain structure as an overlay on top of the lattice. The strength and 
stiffness of each beam can be determined subsequently from the position 
of the beam in the grain structure (Fig. 2). In the figure, 'A' represents 
the aggregate phase, 'M' the matrix and 'B' the bond between matrix and 
aggregate. The regular lattice with a grain structure overlay applied 
paper, will be referred to as TYPE A. Table 1 at the end of section 2.2 shows 
an overview of all the lattice types used in this paper. 

For the grain structure, circles are generated according to a Fuller curve 
discretization derived by Walraven (1980). The particles are placed ran­
domly in a 2D box from which the required grain structure is selected. 
different methods for placing the particles in the box are applied. The first 
method is discussed in detail by Schlangen (1993), and consists of randomly 
placing the particles in the box. First the largest particles are placed, 
lowed by the smaller particles. A random X- and Y-value is chosen 
center of the particle and a check is performed on earlier placed particles 
whether no overlaps appear. This procedure however, is very time consum­
ing because a particle has to be replaced (and checked again) as soon as 
an overlap appears. Especially when a very dense aggregate structure 

(a) (b) (c) 

Fig. 2. Grain structure (a) projected on top of a regular triangular lattice 
(b) and ( c) assigning properties to the beams in each phase 
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generated, may lead to enormous computational efforts. Recently a new 
..,, ....... ,.., .. .U,F-, procedure has been developed which is much more efficient. Out 

n-ari•Ar<JiTArl particles, particle which is to be dropped is selected 
at stead of choosing both a random X- and Y-value, only Xis 
chosen at random. The Y-coordinate is determined by dropping the particle 

the the box. soon as the particle touches one of the earlier 
Y-coordinate is fixed. To make particle structure 

placement procedure can be repeated several 
to determine the lowest particle position. Because the gen­

grain structure does not include all particles (the smallest have to be 
a distance between two aggregates is prescribed. The 

distance between the two particle centers is calculated as dmin=/'*(R1+R2), 
R1 R2 are the respective particle radii. The emperical factor I' 

is fixed as soon as the box is filled appropriately. Next to the minimum 
aggregate size, also the step size in the Fuller discretization influences this 
factor. The grain structure shown in Fig. 2a is a part of the structure used 

the simulations presented in this paper, and contains particles between 
8 mm, generated using a step of 0.25 mm. Each particle was 

from random positions on the top of the box. When a grain 
structure less aggregates is used, the smaller particles can be omitted 
easily. For lattice TYPE A aggregates smaller than 3.0 mm were excluded 

the structure, because of the rather large length of the beams (5/3 
""'-''' ..... lf.J ..... Jl .. ,~ to the aggregate size in the grain structure. The 

used for simulations presented here, are given the 
end of section 3 (Table 2). It is mentioned that with the latter 

llJ ....... ...,..., ....... ..., ........ procedure, holes are formed under large particles, as can 
be seen 2a. This phenomenon becomes stronger when the particle 
placement procedure is repeated less often. 

Kanm[)m lattices 
Next to generating a grain structure for introducing heterogeneity the 

element mesh, a disordered structure of the mesh can be used. A 
triangular with a random length of the beams already exhibits a 

heterogeneity. paper two different types of random lattices 
are used. one has already been tested extensively in Schlangen 

and Vervuurt et al. (1994), and will only be pointed out briefly. The 
procedure for generating mesh was developed earlier by Moukarzel & 
........ ..., .............. , .... , .......... (1992). Lattice TYPED (Table 1) has a regular square grid as a 

(cell s=l mm, see Fig. 3a). each cell of the grid a node is 
selected at random and next the lattice is defined by connecting always the 

nodes are closest to each Also a combination of lattice 
and D can used, i.e. a random lattice with particle overlay. 

lattice not applied this paper but an example is given in Van Mier 
& Vervuurt (1995). 
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1 ... s ... 1 

(a) 

Fig. 3. Applied random lattices; (a) generation of a random ~'-'·"'"'-Jl'"""" 
on a regular square grid and (b) a random lattice structure on 
the particle centers 

A variant to the random lattice based on a regular square grid, is 
the nodes are not fixed to any cell structure. A possible nodal structure 
for concrete is using the particle overlay as shown section 2.1 (see 
3b). The construction the lattice can proceed a way as 
lattice based on a grid structure, i.e. connecting always the three nodes 
(particle centers) which are closest to each other. It may be obvious 
density of the mesh strongly depends on the aggregate size 
particle structure. In this paper one particle structure is used 
two lattices were constructed. Lattice TYPE B (Table was generated 
particles between 0.50 and 8.0 mm. For the second "center particle lattice" 
(TYPE C), all particles smaller than 0.75 mm were excluded 
structure. 

Finally a remeshing procedure is adapted for the random on 
a regular square grid (TYPE E in Table The remeshing procedure is as 
follows. First of all, one fine and one coarse nodal structure is generated 
the specimen to be simulated. Each nodal structure is based on 

shown in Fig. 3a. Subsequently the nodes from 
(s=l.O mm) are projected around the crack (or at 
remainder of the specimen is overlayed with nodes 
structure (s=5.0 mm). Next the mesh is generated according to 
described above. As soon as the propagating crack reaches coarse 

(a) 

Fig. 4. Remeshing technique. Two stages of crack growth are 
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4a), remeshing is started. A new area is defined for the fine mesh and 
former fine structure is replaced by the coarse mesh (Fig. 4b ). Only 

from the fine mesh along the crack are kept intact, which allows for 
face bridging outside the fine region. In the coarse mesh itself, no 
are allowed to appear. 

Table. 1: Overview of the lattice types used in this paper. 

I Lattice Type I Abbreviation I 
Regular lattice with grainstructure overlay TYPE A 
Random lattice based on a grainstructure 
Including particles between 0.50 and 8.0 mm TYPEB 
Including particles between 0.75 and 8.0 mm TYPEC 

Random Lattice based on a grid 
Based on a single grid TYPED 
Based on a double grid TYPEE 

3 Parameter indentification 

lattice model, two types of parameters can be distinguished, i.e. 
properties regarding the linear elastic material behaviour and fracture pa­
rameters. The geometric properties of the beams (height h, thickness t as 
well as the Young's modulus E) are determined in a rather straightforward 
manner (Schlangen, 1993). The thickness of the beams is chosen equal to 
the thickness of the simulated specimen. The height h and the local E of 
the beams depends on the global Young's modulus and Poisson's ratio of 
the modelled material. After selecting a local E for the beams, h is fixed. 
When a grain structure is used as an overlay on top of the lattice (TYPE A) 

Table. 2: Overview of parameters used in the various lattice types. 

Lattice Particles EA/En EM/En ft)ftB !tfl,/!tB Cell Beam 
Type Size Heigth 

(mm) (mm) 
TYPE A 3.0-8.0 70/25 25125 8.0 4.0 5/3* 1.13 
1 'PEE 0.50-8.0 1.0 1.0 - 0.99 
TYPEC 0.75-8.0 1.0 1.0 - 1.44 
T'PED - 1.0 1.0 1.0 0.73 
TYPE E** - 1.0 1.0 1.0 0.73 

* Beam length rather than cell size 
** Indicated parameters refer to the fine lattice structure 
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different Young's moduli have to be assigned for each of the three phases, 
as mentioned in section 2.1 (Fig. 2c ). The degree of heterogeneity of the 
material is determined by the two ratios of the three Young's moduli, EA/EB 
and EM/EB. Next to these ratios, heterogeneity is varied by changing the 
beam strength ratiosft)ftB andftA/ftB, where ft is the stress at which a beam 
is assumed to fail. When no aggregate overlay is used (TYPE B,C,D,E) 
all ratios are equal to 1.0 and disorder depends only on the geometric 
regularities of the mesh. It should be mentioned that we do not know the 
relation between the disorder in the random lattices and the heterogeneity 
of the material. Contrary to the previously mentioned parameters, the beam 
strength is a fracture parameter. The stresses in the beams are calculated 
as a combination of the normal force and the bending moments in a beam. 
Two additional parameters which are added to the fracture law will not be 
discussed here but the reader is referred to Schlangen (1993) and Vervuurt 
et al. (1994). An overview of the parameters for the lattice types presented 
in this paper is given in Table 2. 

4 Applications 

4.1 U niaxial tension 
The five different lattice types described in the first part of this paper have 
been used for simulating a uniaxial tensile test. The specimen di­
mensions 100x200 mm (thickness SO mm) is single edge notched at 
height. The net area at the notch is 8SxSO mm2 • The specimen is loaded by 
translating the (fixed) boundaries at the top and the bottom of the specimen 
parallel to each other. The crack opening plotted in the stress-crack opening 
diagrams (Fig. Sg) is the average of the deformations measured at the left 
and right side of the specimen. The measuring length was 3S mm. the 
stress-crack opening diagrams, the stresses and deformations are normal­
ized, using a factor f3. It is mentioned that f3 depends on the lattice type 
and therefore differs for each simulation. Next to the stress-crack opening 
diagrams, crack patterns obtained with the corresponding lattice types are 
given (Fig. Sa-f). For lattice TYPE E two stages of crack growth are shown 
(Fig. Se and Sf). The remaining lattice types are illustrated with one crack 
pattern only. Only the area where a lattice is used is shown. It can be seen 
that especially TYPE A shows quite realistic crack growth. Microcracks are 
initiated along the bond between matrix and aggregate. In a later stage 
crocracks join to localized macro cracks. The final crack patterns however 
are comparable for all lattices used, as are the computed stress-crack open­
ing diagrams. A general conclusion which can be drawn is that more details 
in the crack pattern are obtained as soon as more detail is included in the 
finite element mesh. More details can be achieved by an aggregate overlay 
(TYPE A) or a smaller beam length. Moreover TYPE E seems extremely 
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and dimensionless load-deformation curves (g) 

simulating specimens where the direction of crack growth is 
to predict. The-amount of beam elements mostly depends on the area 

a fine lattice is used. Curved crack growth for instance requires a 
large area modelled with a fine lattice of beams. In the following 

....,.., .. ," ... ...,_ ... _ two examples curved crack growth are given . 

....,. ..... , .......... , ........... and shear loaded specimens 
section two additional applications of lattice TYPE E are given. 

new splitting type experiment as presented in this proceedings (Vervuurt 
& Mier, 1995) is simulated. The second application is the biaxial 
tensile/shear experiment after Nooru-Mohamed (1992). In the splitting 
experiment a horizontal load is applied to the steel loading platens at the 

the specimen (Fig. 6a). The specimen is supported at the bottom. 
specimen Fig. 6b is loaded by a horizontal translation of the upper 

JL ........................ ;o.. platen. The lower loading platen is fixed in two directions while the 
vertical direction. More details about loading 

boundary conditions not be discussed here. The reader is therefore 
..., .... ....,"_ ... ....,~to Vervuurt & Van Mier (1995) and Nooru-Mohamed (1992) for the 

..,IJ ............. ,, ...... ..., test and the tensile/shear experiment respectively. 
crack patterns shown in Fig. 6 are quite similar to the experimentally 

r..i-.1r•:u1'.,,,,.r1 results. The most significant gain in the remeshing technique is the 
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Fig. 6. Crack patterns for a simulation of (a) a splitting test after 
& Van Mier (1995) and (b) a shear loaded test 
1992) 

reduction of the amount beams neccesary for modelling 
and thus the computational capacity needed. Only the place where Jl.._,....,....,,,_Jl~"'"''-" 
crack growth starts, has to be advance. For example 
test (Fig. 6a) an enormous reduction beam elements is obtained, V"-'"'""'~"-' 
crack growth can proceed either to the left or right side of the "'•-"'·"''"" ........... ....,JLll. 

Next to this advantage also a disadvantage should be mentioned. A.;....,.., .......... "'..., 

distributed (non-localized) microcracks are allowed to grow outside 
region around the crack tip (except for the bridges) the lattice is 
only for rather brittle materials. Compared to the SEN tensile test 
with lattice TYPE A (Fig. Sa) too microcrack growth is allowed 
specimens modelled with lattice E (Fig. 5e, 5f and Fig. 5). It 
is rather debatable whether this technique is useful for simulating 
concrete. Then, especially when large aggregates are included, large 
face bridges and a wide range of microcracks are observed (Van Mier, 

5 Conclusions 

A lattice model is described for simulating cracking concrete ..., ... ,, .... ,..., ... ._ .... .., ..... u. 

Heterogeneity is implemented several ways, and five different lattice 
have been applied in the simulation of a SEN tensile test. It is shown 
final crack patterns and the stress-crack opening diagrams are quite ._.. ........ , ...... ,.,.,... 
for all lattices. If more detail is included in the mesh, more detail 
patterns is obtained. More detail can be included by refining the 
by projecting the material structure on top of the lattice. The latter ........ .., ........ v, ..... 

prevails. A new remeshing technique is presented in this paper as 
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remeshing technique seems extreme! y effective when the crack path is 
to predict. For highly heterogeneous materials however, the remeshing 

procedure seems less suitable. 
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