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Abstract 
On the basis of the standpoint of bifurcation, the stochastic 
ation of compressive strength of cylindrical concrete 
ascribed with the variation of initial imperfections of the 
The explicit formula of the probability density function com­
pressive strength and several pertinent power laws for imperfection 
sensitivity are employed to testify that concrete specimens 
compression do indeed undergo bifurcation. 

1 Introduction 

Compressive strength of specimens is well known 
a statistical variation. It is customary to ascribe such a 
to variations of material properties, such as, the frictions 
boundaries and the grading and arrangement of aggregates. 

In an earlier stage of the research, the statistical variation was 
examined based on the experiment on more than 100 concrete 
imens, for example, by Cusens and Wettern (1959). Owing to a 
of a firm theoretical basis, the normal distribution is often 
to simulate the histogram of the compressive strength. 

"Fracture" due to distributed cracking is acknowledged as a 
tential cause of the compressive failure of concrete, in 

425 



brittle materials, such as rocks and metals. Bazant (1983, 
1984), for example, extensively investigated the fundamental mech-
......, ........... ..., ......... of the failure size effect of concrete clue to fracture. 

contrast, in of soil mechanics, "bifurcation" has come 
acknowledged as a major source shear failure. 
, for example, a shear band analysis of granular 

as an extension of the plastic bifurcation by Hill and 
(1975). and Goto (1993) employed the concept of 

imperfection sensitivity to develop a method to assess the presence 
bifurcation for sand specimens, and demonstrated the mechanism 

effect specimen height. This method serves as an ex-
of the Koiter law ( 1945) and the bifurcation equation by 

...... V' .......... 1-)',JV'.L.L and Hunt (1973). Furthermore, Ikeda et al. (1995) ex-
variation shear strength of sand specimens 

this with a theory of stochasticity of 
by Ikeda Murata (1993). 

aim of this paper is to explain the stochastic variation of 
versus displacement curves and the maximum loads of an 

ensemble of cylindrical concrete specimens based on the standpoint 
of bifurcation. use of the major assumption that these 

,_,...,,~ .............. ..., ....... u undergo bifurcation, such variation is ascribed with the 
.... ....,., .. '-" ....... of initial imperfections among specimens. The theory of 
stochasticity is employed to obtain the explicit formula of the 

probability density function of the compressive strength. Experi­
........... '-, ....... ., ........... data are shown to accurately follow several pertinent power 
laws for imperfection sensitivity (Ikeda and Goto, 1993), which of-

information on bifurcation of concrete specimens. Further we 
simulate the load versus displacement curves by means of the bi­
furcation equation. The present method has successfully simulated 

categorized the behavioral characteristics of various kinds of 
specimens, hence to insure major assumption that 

concrete specimens do undergo bifurcation. 

2 Bifurcation Theory 

this section we off er a summary of Ikeda and M urota ( 1993) and 
~ ... ~~·~~ and Goto (1993) as a basic tool to represent the mechanism 

strength variation of specimens based on the standpoint of bifur­
We consider a system of nonlinear equilibrium equations 

H(P, u, v) == 0, (1) 

where denotes a loading parameter (axial stress in this paper); 
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u indicates a nodal displacement (or position) vector; and v an 
imperfection vector. We assume to be sufficiently smooth. 

For a fixed v, a set of solutions ( P, u) of the above system 
equations ( 1) makes up equilibrium paths. Fig. 1 illustrates 
behavior in the vicinity of a bifurcation point (Pc°, u~) of 
system shown as ( o). Here clashed lines stand for 
for the perfect system, solid ones for imperfect 
( •) for a limit point (Pc, Uc) of the imperfect system, 
maximum stress (critical load) of the specimen (structure). 
refers to the critical point and ( · )0 to the perfect system. 
point, which is either a bifurcation or limit point, is 
point where the Jacobian of the system becomes singular, 
<let 8H/ 8u = 0. Such point is categorized into simple, double, and 
so on, according to the number of zero eigenvalues of 
is equal to 1, 2, 

We write 
v = v 0 + Pc = Pc°+ DPc, (2) 

where E(2 0) denotes the magnitude of the initial imperfection ( E = 
0 for a perfect system and E > 0 an imperfect one); d is a 
indicating the pattern of imperfections; bPc means 
increment of the critical load. analyses presented in 
are all asymptotic and are valid only when E is small. 

0 

fm I 'P . 2 u =-gov, 

Displacement (strain) 

Fig. 1 Force-displacement curve 
of a bifurcation point 

427 

the vicinity 



vicinity of an unstable simple symmetric bifurcation point 
or an unstable double 1 bifurcation point, the Koiter law (1945) 

the increment (decrease) 8Pc of the maximum stress (critical 
load) for an imperfect system with the magnitude E of initial 
imperfections, that is, 

(3) 

Co is a constant, and the explicit form of the variable a== a( d), 
which is dependent on the type of critical points, is given in Murota 

Ikeda (1991) 
law in Eq. (3) gives information only on the maximum 

stress. the simple symmetric bifurcation point, Ikeda and Goto 
(1993) derived a more general imperfection sensitivity law for an 
arbitrary displacement, say u - ui. It is to be emphasized here that 

results given below are applicable also for the double point 2
. 

First by taking the difference between the equilibrium equations (1) 
bifurcation point (Pc°, u~) of the perfect system and for the 

point (Pc, Uc) for the imperfect one, and by eliminating the 
displacements other than u, we can obtain: 

( 8u - r8P - s8u2)8P + p( 8u - r8P - sbu2f3 + qE + h.o. t. == 0, ( 4) 

which denotes the incremental force 8P versus displacement bu 
curve for the perfect system for E == 0 and for imperfect one for 
E -:/= 0. p, q, r and s are some constants, and bu u - u~ 
denotes the incremental displacement for an arbitrary displacement 
component u _ U-t from the bifurcation point for the perfect system. 

Next we consider the parabola 

bP == -g8u2 
. ' (5) 

shown by the clotted-dashed line in Fig. 1 (g is a positive constant). 
substituting of Eq. (5) into Eq. ( 4) and the omitting of the 

terms higher than 8u3 lead to 

(_q_) 1/3 1/3 
8uloP=-g8·u.2 ,...._, E ' g-p 

(6) 

1 As a double point, we consider only the group-theoretic unstable double bifurcation point 
of an axisymmetric system the index of which is greater than five [see Ikeda, Murota, and Fujii 
(1991) for details]. 

2 Such applicability is based on the fa.ct that the bifurcation equation for the double bifurca­
tion point can be reduced to that for the simple symmetric bifurcation point through a simple 
transformation. See, e.g., Murota and Ikeda (1991). 
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where 8ul 8P=-gi5u2 denotes the displacement on the intersection 
[shown as (6) in Fig. l] of parabola 8P = -g8u2 an 
imperfect P versus u curve. 

Finally the combination of ( 3) and ( 6) yileds a power 

bPc rv ( buJ 8P=-gDu.2)
2

, (7) 

which is pertinent to testify presence of bifurcation on 
experimental force versus displacement (stress versus strain) curves. 
Here D = Co [a(g - p) / q] 2! 3 is a constant. 

In order to investigate the stochastic properties of buckling 
, let us consider the case where the imperfection pattern 

d is subject to a multivariate normal distribution with a mean 0 
and with a positive definite variance-covariance matrix 
focus on the double bifurcation point in the remainder of this 
[see Ikeda and Murota (1993) for the results for other types]. 
probability density function of the critical load Pc is evaluated 

f (p) = 3(Pc - Pc°)
2 

ex (-IPc - Pc°l
3

) -00 <Pc< 
Pc c 2C3 p 2C3 1 

where C is a constant associated with the variance. The mean 
and the variance Var[Pc] of are expressed respectively as 

(8) 

E[Pc] =Pc° - l.13C, Var[ Pc] = (0.409C) 2
. (9) 

It is to be emphasized here that by the present method a mere 
calculation of the sample mean E[Pc] and variance Var[Pc] 
critical loads will yield the values of parameters Pc° and C 
(9), and, in turn, the probability density function in Eq. (8). 

3 Application 

We have carried out a series of compression tests on 
concrete specimens under the same condition to obtain two 
axial stress-axial strain ( O" - E) curves shown in Fig. 2. Aggregates 
were obtained from the Shinano river: aggregate size was 2.5-5.0 
(mm) for Case A (13 specimens) and 10-15 (mm) for Case B ( 
specimens). These specimens had a constant diameter of 10 cm 
a height of 20 cm. Ordinary Portland cement was used. curves 
in Fig. 2 are investigated in the sequel by means of the present 
method in §2, which hold also for .this case merely by replacing 
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2 Stress versus strain curves for concrete specimens 

Case A Case B 

0 /ac 
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Maximum stress (kgf/cm2 ) Maximum stress (kgf/ cm2
) 

Fig. 3 Histogram and probability density function 
of stress. 

Table 1 values of o-~ and C 

Esample [o-c] Var sample [ O" c] o-o c c 
(kgf/cm2

) (kgf/cm2
) (kgf2/cm4) (kgf/cm2

) 

Case A 184.9 173.3 221.0 32.2 
Case B 222.5 140.4 255.0 29.0 
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Fig. 3 shows the histogram of the maximum stress () c for those 
specimens. The use of the sample mean Esample [ () c] and the sample 
variance Varsample[(}c] of the maximum stress (Jc in Eq. (9) led to the 
values of()~ and C listed in Table 1. The substitution of these values 
into Eq. (8) led to the probability density function of (Jc shown by 
the solid curves in Fig. 3. Although the difference between these 
curves and the histograms may appear to be large, such difference 
will be reduced by increasing the number of specimens. It is note­
worthy that the curves are bounded rightward at the critical stress 
ratio ()~ for the perfect system, because (Jc for imperfect systems 
cannot exceed ()~ for whatever initial imperfections. 

In order to assess the validity of the power law in Eq. (7), we 
first obtained the intersection point of the parabola b() == - gbc2 

(see Fig. 1) and the experimental () versus E curves shown in Fig. 
3. Fig. 4 shows interrelationships between b()c and the square of 
the incremental displacement bclcfo=-g&2 for this point. Here the 
values of g and c~, which are listed in Table 2, were chosen in such a 
manner that the power law in Eq. (7) correlated accurately with the 
experiment; at the course of this it was noted that this correlation 
was sensitive not to g but to E~. This agrees with the nature of Eq. 
(7), which holds for any g and the true c~. The straight line in this 
figure denotes the least square approximation of the experimental 
data. It is, in particular for Case A, fairly in good accordance with 
the linear relationship between b()c and ( bclfo=-gbc:2 )2 of Eq. (7) 
that should pass the origin. This assesses the validity of the present 
procedure to explain the variation of soil shearing behavior by 
"stochasticity of initial imperfections." 
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Fig. 4 Experimental b()c - ( bclcfo=-gbc:2 )2 relationships 
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simulation of the representative sets of experimental stress­
strain ( <5 - E) curves by the theoretical curves in Eq. ( 4) is shown 

Fig. 5. Here the parameters p, q, r and s Eq. ( 4) were chosen 
based on preliminary analyses. The theoretical curves shown by the 
'--L._ .. ,..., ....... '"'"'. lines correlate fairly well with the experimental ones by 
solid ones. 
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5 Simulation of stress-strain ( <5 - E) curves (Case A) 
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Fig. 5 Simulation of stress-strain ( O" - E) curves (Case 

4 Conclusions 

The various formulas presented in §2 can explain well the various 
aspects of the compressive behavior of the concrete specimens. 
shows the validity and usability of the present method. It may be 
ironical that one can extract important information on bifurcation 
from the probabilistic variation of the compressive strength that is 
indeed problematic in experiments. 
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