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Abstract 
A lattice model is used for analyzing fracture in concrete CT speci­
mens of differing scale. Six specimens are simulated at each of three 
scales for comparison with experimental results. The lattice model 
provides estimates of fracture process zone size and the distribution 
of damage and energy consumption within its limits. Peripheral mi­
crocracking, though extensive, consumes very little energy relative 
to the mechanisms involved in actual material separation. Of par­
ticular interest is the dependence of fracture energy on both strain 
gradient and specimen size. Size effects witnessed in the numerical 
concrete agree well with experimental trends. 

1 Introduction 

Fracture analyses based on discretizations at the material mesoscale, 
as promoted by Roelfstra et al. (1985), are becoming more feasible 
due to advances in computing technology. In this research, the 
lattice model developed by Schlangen and van Mier (1992) is mod-
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a : aggregate 

m: matrix 

i : interface 

Fig. 1. Lattice model of a three-component material 

represent three-dimensional nature of concrete 
material and fracture processes. This lattice model is then used to 
analyze fracture in concrete specimens of differing scale. The analy­
ses provide detailed descriptions of damage and energy consumption 

the process zone (FPZ). Variances local fracture 
to material heterogeneity and the effects of strain 

gradient. latter of these causes appears to contribute to an 
overall size effect, that is the dependence of specific fracture energy 
on specimen scale. 

2 Lattice modeling concrete fracture 

lattice network of beam elements is used to model the concrete 
mesoscale structure, which is made of three components (Fig. 1): 
aggregate (a), matrix (m), and aggregate-matrix interface (i) . ...._,..._,,UJ ........... 

properties are assigned according to their location relative to the 
three components (Schlangen and van Mier, 1992). The aggregate 
particles are distributed so as to represent an actual material. 

The effective stress acting in each element is computed as: 

(1) 

where A and are beam cross-section area and section modulus; 
, M 2 , and are the beam end moments and axial force; a is a 

parameter to control the influence flexure has on fracture; and f3 is 
a parameter for scaling beam effective stress to global stress levels. 

settings for O'. and f3 are discussed later in this paper. n is 
described next. 

For each solution cycle, the lattice element with the highest 
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Fig. 2. Concrete CT specimen model (L = 150mm) 

stress ratio a-/(JJ 2:: 1 experiences a 'fracture event', where (Jf rep­
resents the component strength. Conventional algorithms reduce 

stiffness to zero upon violation of the fracture criterion. 
models behave as if the local structure and fracture process 

~~~--~~~~uniformly through the specimen width. To better model the 
three-dimensional nature of the material and fracture process, the 

fracturing elements is gradually reduced via damage pa­
.......... 'Y'lnTrYr n, which ranges from 0 to 1 and is dependent on component 

local failure results a loss of effective load carrying 
stresses increase the yet intact material. For this reason 0 

Eq. 1. Additional details are given in Bolander (1995). 

3 specimens of differing scale 

fracture specimens tested by Wittmann et al. (1990) 
are analyzed. Their program considered three series of specimens 

ligament lengths L = 150, 300, and 600 mm; each series dif­
scale, except for specimen thickness which is constant. 

Modeling of the L = 150 mm series is shown in Fig. 2. A two­
dimensional lattice network composes the central region where frac­

is likely to occur. Super elements constructed from plane stress 
element equations are used to model the surrounding re­

gions. Compatibility is maintained along the lattice region borders 
constraining the displacements of the perimeter lattice nodes. 

-'-"'V'L'U'-'-.•-LJ..J;:;.. is applied via displacement control at the points indicated 
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figure. Weak interfacial strength is assumed for modeling 
normal concrete, that is CJj : (Jf : CJ} = 8 : 4 : 1. 

Provided the fracture process is rather localized, it is not neces­
sary to discretize the fracture domain using the entire lattice region 

Fig. 2. Computational demands have been greatly reduced 
by using an adaptive procedure which models only the FPZ and its 
immediate vicinity with the lattice model (Bolander, 1995). That 
is, the active lattice region and the boundary element constructs 
are updated as the FPZ travels along the ligament length. 

direct comparisons with experimental results, six specimens 
are analyzed at each scale. Fig. 3 shows typical results for the largest 
scale specimens ( L = 600 mm). Smaller scale specimens provide 
~······~-~~ results (Bolander, 1995). Fig. 3a shows the distribution of 
energy consumed over entire loading history. The same results 
are presented in Fig. 4 for fracture up through about 150 mm of 
the ligament length. These contours are plotted using a log scale 
(i.e. consecutive contour energies differ by a factor of ten) with 
darker levels indicating higher energies. 97 to 99+3 of the fracture 
energy is consumed by processes leading to discrete crack formation; 
peripheral 'microcracking' consumes a very small fraction of the 
total fracture energy. These results are supported by analytical 
work of Nirmalendran and Horii (1992). 

3b illustrates the distribution of damage over the lattice re­
gion. Lattice elements which are completely damaged, i.e. n = 1, 
have been removed from the mesh. Those suffering partial dam­
age are plotted using thinner lines. The fracture process widens 
out from the notch tip, reaches a maximum width over the cen­
tral portion of the ligament, and then narrows under the infi uences 
of higher strain gradient and confinement when approaching 
compression face of the specimen. Highly damaged elements occur 
within a width of roughly lda or less, agreeing with experimental 
observations of Du et al. (1990) and van Mier (1991). 

Fluctuations in local fracture energy, g f, along the ligament 
length are related to material heterogeneity (Fig. 3c). The lower 
energies often correspond to locations where the main crack fol­
lows an interfacial region. Higher energies generally correspond to 
locations where fracture advances through the matrix, the great­
est peaks occurring where failure involves a bridging mechanism. 
Introducing a variable damage measure (i.e. n) helps temper the 
variance in local fracture energy. 

Averaging the g f values provided by the six specimens within 
each series makes it easier to recognize general trends (Fig. 5). ?Ji 
increases with distance from the notch tip, then is rather constant 
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Fig. 3. Typical fracture response ( L = 600 mm) 
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Fig. 5. Local fracture energy variance along ligament 
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in the rate at which G f increases with L, yet it is not clear if G f 
becomes constant before L = 600 mm. Peak loads agree remark­
ably well, although variance is much greater for the numerical series. 

4 Conclusions 

A lattice model was developed and applied to simulating fracture 
in concrete CT specimens of differing scale. Several conclusions can 
be made: 

1. Fluctuations in local fracture energy are related to material het­
erogeneity. When averaged over several specimens, local fracture 
energy increases with distance from the notch tip, becomes essen­
tially constant over the ligament midlength, and then decreases 
when nearing the compressive face of the specimen. 

2. About 97 to 99+% of the total fracture energy is consumed in a 
width of lda centered about the macrocrack; peripheral microc­
racking consumes relatively little energy. 

3. The numerical concrete exhibits size effects which agree well with 
experimental trends. 

4. Random material modelings allow for comparisons with series of 
test specimens, not only in the mean value sense but also with 
respect to variances of the response quantities. This quality is 
important in researching material behavior. 
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