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Abstract 
The phenomenon of the size-dependence of the concrete fracture energy is 
discussed. It is shown that the scaling of toughness can be consistently 
interpreted by means of a fractal model, the influence of microstructural 
disorder being predominant. Moreover, at the larger scales, the fields 
homogeneization progressively comes into play, leading to the multifractal 
scaling of the physical properties. A Multifractal Scaling Law (MFSL) is 
proposed for the fracture energy Qp, following the MFSL already applied 
to the scale-dependence of strength (Carpinteri et al., 1994). By means of 
best-fitting of the test data, the full range of the scaling is described and an 
asymptotic value of Qp, valid for real-sized structures, can be determined. 

1 Introduction: disorder, fracture energy and size effects 

The constitutive model that appears more suitable for describing the tensile 
behavior of heterogeneous materials like concrete, ceramics and rocks is 
the Cohesive Crack Model by Hillerborg et al. (1976), which is based on 
two different relationships (Fig. la). The first one is the elastic-plastic 
stress-strain law, holding up to the ultimate tensile stress au, and the 
second is a stress-crack opening displacement law, also called the cohesive 
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law, which describes the softening behavior provided by the damaged 
process zone. 

(J (J 
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g F = J cr (w) dw 
0 

crack opening 

crack length 

Fig. 1. Cohesive crack model (a) and FPZ evolution (b) during crack 
propagation (Hu & Wittmann, 1992). 

The area under the cohesive law cr( w) represents the energy dissipated 
on the unitary crack surface and, by definition, is called the fracture energy 
g F of the material: 

WF 
gF = ~' (1) 

lig 

where W F is the total work necessary for the complete fracture of the 
specimen and Aug is the area of the initial resisting ligament. The cohesive 
law is generally assumed as a material characteristic, since it intimately 
depends on the microstructure and on the dissipation mechanisms involved 
in the fracture process (bridging, creep, aggregate interlocking): therefore, 
the fracture energy g F is usually assumed as a material constant. 

The experimental determination of concrete fracture energy g F is 
nowadays ruled by a RILEM Recommendation ( 1985) and consists in a 
standard displacement-controlled three-point bending test. A huge number 
of tests preceded and followed the publication of the aforementioned 
Recommendation: unfortunately, the increase of the measured value of g F 

with increasing specimen size has often been detected, which is essentially 
the same trend observed in the case of other toughness parameters (K1c or 
]-integral), even in different materials. In the first extensive round-robin 

582 



almost 700 beams were tested in 14 different laboratories, but the size 
range was rather small: after analyzing the results, Hillerborg (1985) 
concluded that g F could be considered as a material constant, being its 
variation with size less than one third of the corresponding variation of 
strength. Subsequent investigations by Swartz & Refai ( 1987) on wider 
size ranges showed that the g F variation with size is not negligible at all, 
and that this scaling effect has to be considered so important as the more 
familiar size effect on tensile strength. 

Hu & Wittmann (1992) state that responsible for the variation of the 
nominal fracture energy g F is the increase with size of the fracture process 
zone (FPZ) width ap, which causes the increase of the critical crack 
opening displacement w2=wc in a bilinear cohesive law (Fig. lb). Since 
the energy dissipation takes place in the fracture process zone, whose 
width expands during crack propagation (R-curve behavior) at least up to a 
limit value (fully-developed process wne ), it is reasonable to suppose that 
in larger specimens, where the FPZ can develop entirely, a higher value of 
w c is reached, yielding a higher measured fracture energy. A local fracture 
energy gF(x) is proposed, proportional to the FPZ width and thus to we, 
whose integration along the fracture path provides a size-dependent 
fracture energy, according to the experimental trend. Beyond a threshold 
structural size, the FPZ attains its highest width and remains constant: an 
asymptotic value of g Fis thus measured in the limit of the largest sizes. 

Three causes, not adequately taken into account by the RILEM 
standard test, are considered by Elices et al. (1992) to be responsible for 
the variation of g F with size: the energy dissipation from hysteresis in the 
testing equipment and in the lateral supports, the bulk dissipation in the 
most stressed regions of the sample and the dissipated energy at the end of 
the loading process, which is neglected due to the cutting of the P-8 tail. 

Starting from its definition, the fracture energy g F does not represent a 
local toughness parameter, like the critical stress-intensity factor K1c 
(tensional fracture toughness); it rather represents a mean-field quantity, 
involving the whole complexity of microscopical phenomena ahead of the 
crack tip, which take part in the total work-of-fracture (energy fracture 
toughness). The great advantage of such a global parameter is provided by 
the absence of linearity requirements in the fracture process: no 
information on the singular stress field at the crack tip is needed, and 
Linear Elastic Fracture Mechanics can be neglected. On the other hand, 
the physical meaning of g F reveals to be ambiguous, being it defined, 
according to Eq. (1), as a purely surface energy ([F][Lr1). On the 
contrary, it refers to a much more complicated process of dissipation, 
taking place in a higher dimensional space which includes all the 
previously mentioned micromechanisms of damage (Carpinteri, 1994a). 

583 



2 Evidence of fractality the fracture of concrete 

the constitutive models developed to study the mechanical properties of 
heterogeneous materials have to be strictly connected to a particular scale 
of observation (Fig. 2). particular, the progressive vanishing of the 

Tll•~·"'..,..r'"' of disorder as scale increases must be taken into account. 

r------------1 
I I 

microscale mesoscale macro scale 

Fig. 2. Multi-scale propagation of fracture in concrete. 

the case of concrete, for example, micromechanical models apply at 
of the aggregates, where debonding at the matrix interface, 

..., ...... ....,,A,, ..... A and overlapping have to be considered. Numerical simulations 

..,...., ...... '-/,._ ..... """''""'by Schlangen (1995) show that, at this scale, local rotations play 
a fundamental role in fracture behavior, and therefore the Cosserat 
continuum yields a more realistic description of the material. On the other 

at the macroscopic level of the real structures, fracture develops a 
global manner, resembling that of more homogeneous materials, the 
............ ,, ..... ....,,L .. ....,..., of disorder resulting much weaker. 

question naturally arises whether a common feature relating the 
........... ,_, .... .., scales of observation can be established order to describe the full 

.,....., .......... ..,,,_, range of the mechanical properties. application of Fractal 
Geometry to cementitious materials, although relatively recent with respect 
to case of rocks and metals, represents an appropriate approach in this 
sense, due to the multi-scale heterogeneity of these composites. 

Statistical self-similarity (the property of sets showing statistically 
~~~·,~~~·~~ morphologies at various scales of observation) has nowadays been 
extensively detected in case of concrete fracture patterns (Carpinteri & 
,.___, ...................... , 1995). The hierarchical propagation of cracks, in fact, reflects the 

...,JL ....... ""' ....... microstructure of concrete, which ranges from the microscopic 
the cement clinker up to the macroscopic level of the coarse 

aggregates embedded in the paste. The first experimental application of 
the fractal concepts to concrete fracture surfaces is that of Saouma et al. 
(1990), who detected anomalously low values of the fractal dimension~ 
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due to the multifractal character of the considered domains. Lange (1993), 
Issa & Hammad (1994) and Carpinteri & Chiaia (1995) investigated on 
concrete fracture surfaces by means of different experimental techniques, 
always proving the fractality or better, the multifractality, of the fracture 
domains. 

The main aspect to be highlighted, beyond the phenomenological 
evidence, is the physical significance of fractality. The deep connection 
between Physics and Topology is nowadays well known the framework 
of critical phenomena. All the physical systems undergoing catastrophic 
transformations, like phase transitions, earthquakes and brittle fracture, 
show at the critical point fluctuations that are self-similar at all length 
scales, thus resulting in the (theoretical) absence any internal 
characteristic length (or, which is same, in the in.finite correlation 
length of the phenomenon). 

Li= 1.262 Li= 0.631 

(a) (b) 

Fig. 3. Invasive (a) and lacunar (b) fractal domains. 

In the case of fracture surfaces, invasive fractals (i.e. fractal sets with 
dimension~ strictly larger than their euclidean projection) are supposed to 

adequate models for their topology. The von Koch curve, shown in Fig. 
3a, can be considered as the archetype of fracture trajectories obtained as 
intersections of the fracture surface with orthogonal planes. The space­
filling ability of the invasive domains provides positive scaling exponents 
for the mechanical quantities (e.g. the fracture energy) defined over them. 
On the contrary, the rarefied nature of lacunar fractals (like the Cantor set 

Fig. 3b), which can be assumed as deterministic models of the damaged 
material ligament, provides negative scaling exponents for 
corresponding quantities (e.g. the tensile strength, whose size-dependence 
has been explained by Carpinteri et al. (1994) as a consequence of lacunar­
like disorder). 
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3 Renormalization group approach to the fracture of concrete 

The invasive fractal nature of the fracture surfaces produces a dimensional 
increment with respect to the number 2. A fractal dimension being non­
integer and greater than 2 implies that the dissipation of energy during the 
fracture process is intermediate between surface energy dissipation (which 
is the LEFM hypothesis) and volume energy dissipation (which is the 
approach of Limit Analysis and Damage Mechanics). This agrees with the 
mean-field definition of g F as a product of the total work of fracture. 

Ao macroscopic 
scale 

microscopic 
scale A* 

euclidean 
regime 

fractal 
regime 

Fig. 4. Renormalization of fracture energy on a fractal domain. 

A Renormalization Group (RG) transformation can be applied to the 
scaling behavior of fracture energy Qp, related to the topological scaling of 
the dissipation space (Carpinteri, 1994b). For the sake of simplicity, let us 
model this "surface" by means of a deterministic fractal with dimension 
11g=2+dg, whose intersection with an orthogonal plane is a profile with 
dimension equal to !J.g-1, as shown in Fig. 4. A hierarchical sequence of 
scales comes into play, where the first scale of observation is the 
macroscopic one (A0 being the cross-sectional area and Q0 = g F the 
conventional fracture energy), while the asymptotic scale of observation is 
the microscopic (fractal) one, A00 =A* being the measure ([L]2+dg) of the 
fractal set , and g p* the corresponding renormalized fracture energy, 
defined by the following anomalous dimensions, which are due to the non­
integer measurability of fractal sets : 

-(1 +dg) 
(2) 
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A fictitious fracture energy gn can be associated to each scale n, which is 
considered as the energy dissipated at that scale during the formation of the 
unit crack area. We note that, refining the scale of observation, the energy 
dissipation involves, at each step, a larger amount of nominal area, ideally 
tending to infinite in the limit represented by the proper fractal set (£00). 

On the other hand, the total dissipated energy Li W is a "macro­
parameter", in the sense that it is independent of the observation scale, 
since it has to satisfy the global energy balance with the critical strain 
energy release rate. Thus, the following equalities must hold: 

(3) 

From the definition of Hausdorff measure, if b is a characteristic dimension 
of the cross-section, the following relations hold: 

2 
A0 ~b , (4) 

and therefore, equating the extreme members of the cascade in Eq. (3), the 
monofractal scaling relation of the nominal fracture energy is obtained: 

* dg 
QF -QF b . 

Taking the logarithm of both sides of Eq. (5), one obtains: 

(5) 

(6) 

which implies a linear scaling in the bilogarithmic diagram (Fig. 5), 
representing the monofractal size effect on fracture energy. 

2]dg 
1 

lnb 

Fig. 5. Monofractal size effect on fracture energy. 

The same results can be obtained by extending to fractal crack patterns 
the Griffith (1921) relation of energy balance, which, at the critical point of 
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unstable crack propagation, states: 

= da ' 
(7) 

where the first term represents the elastic energy release rate due to the 
propagation of the pre-existing fractal crack, and d W s is the total energy 
dissipated on the developing fractal crack, due to the breaking of the 
material bonds and the coalescence of microcracks. The elastic energy 
release is a macroscopic and global parameter, being it defined in the bulk, 
which means that it is independent of the observation scale: it is therefore 
not sensitive to disorder, so that fractality does not come into play in its 
definition. On contrary, d W s represents the energy directly dissipated 
in the fractal domain, and thus the nature of this dissipation is intimately 
controlled by the disordered microstructure. Due to the requested 
dimensional homogeneity in Eq. (7), dWs holds the usual dimensions of an 
energy ([F][L]). the case of a smooth crack the following relations hold: 

dWE = ~ (cr2
na

2
) = 2mJ.2a 

da E E ' 
(8a) 

dWs d (4ya) 
- = = 4y = 2g 
da da F' 

(Sb) 

where r ([F][Lr1) is the surface energy dissipated on each face of the 
opening crack. In the presence of a fractal crack, the renormalized fracture 
energy g F * has to be considered as the energy dissipated over the fractal 
crack. Taking the derivative of a* with respect to a, where a* = a(l +dg) is 
the measure of the fractal profile, leads to simply write: 

* * d (a ) * d9 - = 2Q = 2 (1 + dg) g a 
da F F 

(9) 

A fundamental consequence of the fractality of the fracture surfaces, 
physically related to the smoothing of the stress-singularity, comes from 
the comparison between Eqs. (Sb) and (9): while, in the case of euclidean 
cracks, the energy dissipation is independent of a, being constant during 
crack propagation, in the presence of fractal cracks it increases with a, 
following a power-law with fractional exponent equal to dg. If the nominal 
fracture energy is related to the renormalized one, it is easy to obtain: 

(10) 
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which clearly indicates that the presence of disorder introduces non­
linearity in the fracture behavior of a linear elastic material, thus implying 
that the crack resistance grows during the propagation of the fractal crack 
in an elastic medium (Fig. 6a) (R-curve behavior). 

dg-t 0 

(a) (b) 

crack length a crack length a 

Fig. 6. R-curve behavior. Monofractal (a) and multifractal (b) hypotheses. 

4 Multifractal Scaling Law (MFSL) for the nominal fracture 

As it has been stated in the previous sections, the complexity of the 
dissipation during the fracture process can be consistently synthesized by 
considering this dissipation to occur in a domain with fractional 
topological dimension comprised between 2 and 3. In any case, 
monofractal scaling behavior described by Eq. (6) and shown 
does not adequately reproduce the experimental results, since an ~~~~-~~~~·-­
nominal fracture energy would be predicted for the largest sizes, despite an 
asymptotic constant value of QF has always been detected by the tests. 
Analogously, the crack-resistance behavior provided by Eq. (10) (see Fig. 
6a) would yield infinite toughness as the crack extends, which is obviously 
far from the experimental reality. This is owing to the modelization the 
dissipation space by means of a mathematical fractal (a monofractal). 

On the contrary, the presence of an internal characteristic length 
typical of each microstructure, inhibits the development of a perfect 
similar scaling through the whole scale range, whereas mathematical 
fractals like the von Koch curve in Fig. 4, lacking absolutely any 
characteristic length, exhibit uniform (monofractal) scaling without any 
bound. The topology of the fracture surfaces appears experimentally 
multifractal in the sense that not a unique value of the fractal dimension 
can be measured, but a continuosly decreasing value with increasing 
measurement scale is detected (geometrical multifractality), as shown by 
Carpinteri & Chiaia (1995). The variable fractal dimension, this 
context, becomes an indicator of the variable influence of disorder, 
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implying, from the mechanical viewpoint, that the effect of microstructural 
disorder on the mechanical properties of the material becomes 
progressively less important for the larger specimens, whereas it represents 
the fundamental parameter at the smaller scales (Carpinteri, 1994b). 

Therefore, the relevance of fractality decreases as the crack propagates 
(that is, as the crack extension a becomes larger and larger with respect to 
the microstructural characteristic length lch). It can be affirmed that dg 
progressively tends to zero as the crack extends, thus implying, in Eq. (10), 
an horizontal asymptote for the fracture toughness (Fig. 6b ), in perfect 
agreement with the experimental observations, where a plateau in the 
crack-resistance behavior is always detected. This permits to explain the 
initial stable crack growth that is usually encountered when analyzing the 
fracture properties of heterogeneous materials. 

Extrapolating this constitutive behavior to the problem of the size 
dependence of Qp (see Eq. (5)), a transition from a disordered (fractal) 
regime at the microscopic scales to an euclidean (homogeneous) one at the 
largest scales is provided in the scaling behavior. The former regime is 
ideally bounded by a "Brownian" microscopic disorder, corresponding to 
the highest possible disorder of the fracture domain (local fractal 
dimension=2.5), whilst the latter regime corresponds to the vanishing of 
fractality or, which is the same, to the macroscopic homogeneization of the 
microstructure (dg ~ 0). A strong size-scale effect is provided by the 
influence of disorder below the transition scale lch' whereas, beyond Zeh, 
the size effect rapidly vanishes, and the classical euclidean theories 
(RILEM approach) become applicable since a constant value of the 
mechanical quantity is attained. 

On the basis of these hypotheses, a Multifractal Scaling Law (MFSL) 
can be deduced for the scaling of the nominal fracture energy, in perfect 
correspondence with the MFSL already proposed for the nominal tensile 
strength by Carpinteri et al. (1994). The analytical expression for this 
Multifractal Scaling Law, represented in Fig. 7 a, is the following: 

(11) 

where g; is the nominal asymptotic fracture energy valid in the limit of 
infinite structural size (b~oo). The non-dimensional term into square 
brackets represents the decrease, due to the disorder, of the nominal 
fracture energy with respect to the constant asymptotic value. Note that the 
asymptotic requirements are satisfied by the former expression: if one takes 
the derivative of Eq. (11), and takes its limit for b~o+, the maximum slope 
of the size effect law, equal to+ 1/2 (Brownian disorder), is obtained. 
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The horizontal asymptote, corresponding to the larger structural sizes, 
represents the homogeneous regime of the scaling, and is described by the 
following expression: 

lnQ = lnQ00 

F p' 
(12) 

whereas the oblique asymptote, corresponding to the fractal regime of the 
scaling, is described by: 

lnQ = !1nb+ln[g;l· 
F 2 ~ 

(13) 

Whilst the horizontal asymptote, corresponding to the larger structures, 
is governed by Q;, which is a purely surface energy, the oblique one, 
corresponding to the smaller structures, is controlled by the ratio between 
surface energy and the square root of a length, that is, by a stress-intensity 
factor (K1) with physical dimensions [F][Lr312• 

00 Q 
In g -----------

F I 

' 

(dg=O) 

(a) (b) 

Fig. 7. Multifractal Scaling Law (MFSL) for fracture energy. 

On the basis of the MFSL, the RILEM fracture energy, defined as a 
mean-field quantity, appears to be a physically meaningful parameter only 
in the homogeneous regime, whereas Linear Elastic Fracture Mechanics, 
which is characterized by a local approach (K1), governs the collapse of 
unnotched structures only when the characteristic size a of microstructural 
defects becomes comparable with the macroscopic size b of the specimen 
or, that is the same, when the influence of disorder becomes essential. 
LEFM always governs the local collapse of a material but can be 
homogeneized in an energy parameter (Qp) only at the larger scales. This 
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is in perfect agreement with the MFSL proposed for tensile strength by the 
authors, where the Griffith collapse, valid for the smaller sizes, causes the 
oblique asymptote towards infinite values of strength, whereas a constant 
(minimum) value of strength can be determined for the larger structures. 

intersection Q between the two asymptotes represents an essential 
point the diagram. It is characterized, in fact, by a value of the abscissa 
equal to the characteristic length Zeh of the material, which represents a 
threshold scale between the two different scaling regimes, analogously to 
the case of the MFSL for tensile strength. This internal length, which is a 
parameter appearing in any sound modelization of heterogeneous materials 
(non local models, higher order strain gradients, etc.), is typical of any 
natural fractal domain, whereas mathematical fractals (monofractals) have 
no characteristic scale and therefore show a linear and unbounded scaling. 

It is reasonable to suppose that the value of Zeh is related to the size of 
heterogeneities the material microstructure, these being the aggregates, 
in the case of concrete, the grains, in the case of metals, the crystals or the 
pores, the case of rocks, the fibers a fiber-reinforced composite, and 
even the polymeric chains in a plastic material. In the specific case of 
concrete, a linear relationship with the maximum aggregate size has been 
proposed by Carpinteri et al. (1994): 

(14) 

It can be stated that, in the case of a finer grained mortar, the MFSL is 
shifted to the left with respect to the case of a coarser concrete mixture, the 
value of leh being much lower for the mortar, according to Eq. (14). 
Generally speaking, one has to determine for each material the proper 
range scales where the fractal regime is predominant, and consequently 
the minimum structural size beyond which the local toughness fluctuations 
are macroscopically averaged and a constant value of g F can be adopted. 

5 Analysis of experimental results by means of the MFSL 

In this last section, the Multifractal Scaling Law is applied in order to 
interpretate the results from experimental tests on different concrete 
geometries. From an engineering point of view, the method allows for the 
extrapolation, from laboratory-sized specimens, of a reliable value of the 
fracture energy valid for real-sized concrete structures. The Levenberg­
Marquardt algorithm has been implemented in order to fit Eq. (11) to the 
experimental data, giving as results, for the particular concrete mixture and 
test geometry considered, the values g; and leh . 

first geometry to be considered is that of Wittmann et al. (1990) 
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and consists in a series of compact tests over a size range 1 :4 
(bmin= 150mm, bmax=600mm, where b is the initial ligament length). The 
average compression strengthfc is equal to 42.9MPa, and the maximum 
aggregate size dmax to 16 mm. A two-dimensional similitude is present, 
the thickness t of the specimens being constanly equal to 120mm. Six 
specimens have been tested for each representative The nominal 
values of the fracture energy are obtained by the ratio between the total 
work of fracture (area under the load-displacement curve) and the initial 
area of the ligament (bx t). Note that the authors cut the end of the 
softening tail, intending that the hinge-mechanism due to bridging and 
interlocking between aggregates has not to be taken into account in 
toughness evaluation. 

The application of the MFSL to Qp values is shown Fig. 8a. 
asymptotic fracture energy results g; = 196.2N/m, and the characteristic 
internal length Zeh= 209 .5 mm. Therefore, the asymptotic toughness is 
about the 40% larger than the smallest specimens' value (121.5N/m). On 
the basis of Eq. (14), the non-dimensional parameter a results equal to 
13.1. The correlation coefficient, which is a clue for goodness of fit, 
turns out to be R=0.937. 

Qp(Nlm) 100 Qp (Nim) 

150 80 

100 

50 ~b 
60 

40 

20 

b(mm) 
o._._._-'-'-'--'-'--'-~-'-'-"--'-'--'--'-'-'--'-'-"--'-'--'--'-'-'--'-'-'--'-'-' 

b (mm) 
o,._._._._~~~~~~~~~,_,_._,_~ 

0 100 200 300 400 500 600 700 0 50 100 150 200 250 300 350 400 

(a) (b) 

Fig. 8. Application of the MFSL to the data by Wittmann et (a) and to 
the data by Elices et al. (b ). 

Experimental results obtained by rigorously following the RILEM 
Recommendation are those by Elices et al. (1992). Three-point bending 
tests under crack opening control have been carried out by the authors on 
beams made of concrete with dmax= lOmm andfc=33.1 MPa. As the 
previous case, only a two-dimensional similitude is provided, the thickness 
t being equal to lOOmm for all the beams. The beam height, assumed as 
the reference size, ranges from 50mm to 300mm (range 1:6). The nominal 
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fracture energy is obtained from the total work of fracture (considering also 
the weight of the beam and of the testing equipment), divided by the initial 
ligament ((b-a0)xt, where a0 =b/3 is the initial notch depth). The 
application of the MFSL is shown in Fig. 8b: the best-fitting values are 
respectively g; = 110.6N/m and Zeh= 133.1 mm. The asymptotic fracture 
energy is therefore almost 90% larger than the smallest specimens' value 
(57N/m). The non-dimensional parameter a=lchldmax is equal to 13.3, 
whilst the correlation coefficient turns out to be R=0.982. 

An innovative test procedure has been recently developed by 
Carpinteri & Ferro (1994) in order to determine the tensile properties of 
concrete. Bone-shaped specimens, bounded with fixed plates at their ends, 
are tested in direct tension, under displacement controlled loading. The use 
of three independent jacks, the first one acting axially, the others on the two 
principal planes, compensates the load eccentricities due to the not uniform 
damage through the reacting ligament. Therefore, no bending moment is 
present during the loading process. A larger fracture energy, with respect 
to three-point bending specimens, is obtained from these tests: this is due 
to (infinite) stiffness of the boundary conditions, which may give rise to 
the formation of two macrocracks instead of one as in the RILEM test, and 
to their subsequent bridging, thus resulting in a long-tail softening. The 
maximum aggregate size dmax= 16 mm, and the average compressive 
strength is equal to 36.9 MPa. A two-dimensional similitude is present, the 
thickness t of the "bones" being constantly equal to lOOmm. A 1:8 size 
interval has been tested, ranging from b=50mm to 400mm, b being the 
width at the neck of the specimens. 

200 100 

175 
Qp(Nlm) Qp(Nlm) ... 

80 ........... "'1.------------------Jli..··---------
150 .... 

•"' 

125 60 ip 
100 

0 

Si C!Jib 75 40 

50 20 -0- dmax = 8 mm 
25 b(mm) -"llfl·· dmax = 32 mm b(mm) 
00 0 

50 100 150 200 250 0 50 100 150 200 

(a) (b) 

Fig. 9. Application of the MFSL to the data by Carpinteri & Ferro (a) and 
to the data by Zhong (b). 

The application of the MFSL is shown in Fig. 9a: the asymptotic fracture 
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energy results g; =226.4N/m, and the characteristic internal length 
lch=328.8mm. The non-dimensional parameter a results equal to 20.5 and 
the correlation coefficient R to 0.864. 

Zhong ( 1991) performed wedge-splitting tests on two series of 
concrete with different maximum grain size, 8mm and 32mm respectively. 
The examined size range is equal to 1: 8 in the case of the finer mixture and 
to 1 :20 in the case of the coarse one. In Fig. 9b the application the 
MFSL to the experimental data is shown: in the case of the finer grained 
concrete, non linear fitting yields the asymptotic fracture energy 
Q;=78.9N/m, and the characteristic internal length lch=5.6mm (a=0.7), 
whereas, in the case of the coarse grained concrete, the following 
parameters are determined: Q;=89.1N/m and lch=ll.8mm (a=0.37). 
The correlation coefficient R results equal to 0.997 and to 0.881, for the 
finer and the coarser mix respectively. As expected, concrete with a larger 
maximum aggregate size has a higher asymptotic fracture energy. 
Moreover, it is interesting to point out that the coarse mixture yields a 
larger internal length, according to the MFSL, and therefore the transition 
to the homogeneous behavior occurs later than in the case of the 8 mm 
mixture. It is therefore confirmed that the value of Zeh is intimately 
to the maximum aggregate size, as previously supposed by the authors. 
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