Fracture Mechanics of Concrete Structures, )
Proceedings FRAMCOS-2, edited by Folker H. Wittmann,
AEDIFICATIO Publishers, D-79104 Freiburg (1995)

DAMAGE IN DISCRETE AND CONTINUUM MODELS

G. Pijaudier-Cabot

Laboratoire de Mécanique et Technologie , ENS Cachan / CNRS /
Université P. et M. Curie, Cachan, France.

A. Delaplace, and S. Roux

Laboratoire de Physique et Mécanique des Milieux Hétérogenes, ESPCI,
Paris, France

Abstract

Failure in quasi-brittle materials occurs first progressively and then
suddenly when micro cracks localise into a macro crack. From the
continuum point of view, damage models are well suited to capture the
essential features of such a behaviour. With the analysis of damage in
lattices, we demonstrate in this paper that the pertinent variable which
characterises damage is the variation of secant stiffness modulus. The
analysis shows also that an internal length should appear in a continuum
equivalent to a lattice of infinite size, due to spatial redistribution.
Finally, a new damage model where the variation of the volume fraction
of the material due to straining appears explicitly is proposed. This
model incorporates an internal length which does not appear in the
evolution law of damage, but in the field equations governing the
variation of volume fraction.

1 Introduction
In phenomenological damage models, damage is very often understood

as a degradation of the elastic stiffness of the material (see e.g. Lemaitre,
1992). The unrealistic features of damage localisation due to strain
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softening are usually circumvented by the introduction of an internal
length in the continuum description which scales the localisation process
and controls the size of the damage / strain localisation zone (Pijaudier-
Cabot and Bazant 1987, Pijaudier-Cabot and Benallal 1993, Sluys 1992).
This paper is concerned with two aspects of such models:

The first aspect is the motivation for introducing such an internal
length. It is based on the analysis of failure in lattices presenting an
initial disorder. Infinite size lattices are equivalent to a continuum
description. After having presented typical lattice responses, we analyse
several quantities such as the distribution of cracking and its moment
distribution. In particular, we show that the consistent variable, i.e.
lattice size independent, which captures the effect of damage is the global
conductance / stiffness of the model. In the lattice modelling, the internal
length appears as a correlation length due to spatial redistribution and
interactions during the failure process. The variation of this length with
the system size is studied numerically.

Localisation is also characterised by a brutal variation of the volume
fraction of the material. The volume fraction decreases very fast in the
localisation zone to reach O, that is a crack. In the second part, we
examine a constitutive relation where the volume fraction of the material
is also a cinematic variable. An existing elastic model is extended in
order to describe progressive micro-cracking. The model is based upon
the theory of elastic materials with voids. The volume fraction is related
to the damage internal variable. Hence, the variation of the elastic
stiffness due to micro cracking is coupled with the variation of volume
fraction of the material. The properties of this model are quite
comparable to that of a non local damage model.

2 Damage in a discrete system

We are studying here a simple discrete system which captures the
essential ingredients of the behaviour of a disordered material. It is a
regular two-dimensional lattice whose bonds are one dimensional (see
Fig. 1-a). The lattice size is L X L where L is related to the total number

of bonds n=2I%. Each bond behaves linearly up to an assigned
threshold where brittle failure is reached. The model does not aim at
describing a specific material. It ought to be the simplest model whose
thermodynamic limit (lattice of infinite size) should be described by the
damage theory. Yet, this description includes the essential ingredients: a
two dimensional geometry, initial disorder, interactions and
redistribution as the number of broken bonds increases.
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Fig. 1: (a) Lattice used for the analysis; (b) behaviour of one bond.

Instead of solving a mechanical problem, we use an electrical analogy
which turns out to be strictly equivalent to the mechanical problem. The
equations of equilibrium are similar but one dimensional instead of being
two dimensional. The results can be interpreted in a mechanical fashion
provided the current is replaced by the stress, the voltage by the strain
and the conductance by the Young’s modulus. The scaling properties of
the mechanical problem and those of the electrical problem are
indistinguishable (de Arcangelis and Herrmann, 1989). Figure 1-b shows
the behaviour of one bond. The same conductance (stiffness) is assigned
to all the bonds. The heterogeneity of the material properties is
restricted to the variability of the maximum current at failure i, (which
is equivalent to the peak stress). We have chosen here a distribution
which is constant between 0 and 1, hence it is representative of a large
disorder which yields to diffuse damage which localises progressively.
The boundary conditions at the limit of the lattice are periodic so that the
behaviour of an infinite system is represented and boundary effects are
avoided. A constant jump of voltage is applied along the two boundaries
which are perpendicular to the direction y, and symmetry conditions are
applied along the two other boundaries. At each stage of loading, a unit
current ! (load) is applied on the lattice. The current in each bond i is
computed (solution of a linear algebraic system of n/2 equations
according to Kirchhoff law) along with the overall conductance of the
lattice. The computational algorithm removes one bond at a time. In
order to determine the next bond to be broken at a given step, we lock
for the bond where the ratio i, /i is minimum. This bond will fail when

the current applied to the lattice is:
.
I, = mm(—;—) (1
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The voltage V. and the overall conductance of the lattice are obtained
from this critical current. Several computations with different random
seeds have been performed and analysed in a statistical fashion. Figure 2
shows one of these plots for a lattice of size (32 x32).
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Fig. 2 : Global response of the discrete system.

2.1 Global properties of the discrete model

The global properties of the discrete model at any state of damage are, in
this approach, directly connected to the local distribution of current
N(i). Instead of characterising the distribution itself, valuable
information can be obtained with the analysis of the moments of the
distribution of the current. The moment of order m is defined as:

M, = j "N (i)di 2)

Here, we will limit the analysis to moment of order up to 4. This
assumption is equivalent to a truncature in a series development. These
moments are of interest because of their physical meaning : the moment
of order zero is the number of unbroken bonds. The first order moment
is related to the average current, the second order moment is
proportional to the overall conductance G:

M, = j ri?N@)di =2GV? =2G (3)

where r is the local resistance of the bond (unit resistance here) and V
is the global voltage jump applied to the lattice, equal to one in our case.
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Note that the fourth order moment is a measure of the dispersion of
conductance.
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Fig. 3: Evolution of the first four moments of the distribution of current
as a function of the overall conductance.

It is natural to investigate whether the number of broken bonds is a
variable which characterises correctly the evolution of damage in the
continuum sense, that is a degradation of the global conductance /

stiffness. If the number of broken bonds ¢/L? (divided by the
dimension of the lattice in order to have a quantity which is size
independent) is the pertinent damage variable, the plots of the global
conductance versus the non dimensional number of broken elements
should be independent of the size of the discrete model. Delaplace et al.
(1995) have shown that this is not true. Figure 3 shows a log-log plot of
the moments as a function of the second order moment for different
sizes of lattice. These plots do not depend on the size of the system, at
least before the peak is reached. Damage can be defined as the variation
of the overall conductance during failure. This variable describes well
the distribution of the current (stress) in a size independent fashion.

2.2 Existence of a correlation length

Assume that there is a length denoted as & which defines the smallest
size of the representative volume of the material (RVE). By
construction, this length is smaller or equal to the size of the lattice. This
quantity is a correlation length in a statistical sense. Above this size, the
material can be regarded as homogeneous, i.e. without correlation. The
local response of each bond in the discrete model is not independent for
cells in the lattice bellow this size. In such cells, the response cannot be
regarded as that of an homogeneous continuum. In order to exhibit the
existence of a correlation length as the number of broken bonds
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increases, one can analyse their distribution over the cell. This analysis is
based on the variations of distance between two bonds in the lattice
which are consecutively broken during the loading history according to
the foregoing definitions: the distance between to neighbouring vertical
bonds is 1 because there are L bonds on each column of the cell, and the
distance between to neighbouring horizontal bonds is 0.5 because there
are 2L bonds on each row of the cell.
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Fig. 4 : Histograms of the distribution of horizontal distance.

Figure 4 shows for systems of size 16x16 the histograms of the
distribution of horizontal distance between two consecutive broken bonds
denoted as A(d) at the beginning of damage (20 broken bonds), near the
peak (60 broken bonds) and near failure (100 broken bonds). In the
absence of a correlation length, these histograms should be a set of
horizontal lines, which means that the next broken bond can found
anywhere in the lattice. These histograms can be approximated at least
up to the peak: the distribution of the broken links is assumed to follow a
power law function of the distance up to the unknown distance & and

then it is an horizontal line. The length & corresponds then exactly to
the smallest size of the RVE:

h(d)=~d " ford<&, h(d)=h" forde[é,%} 4)

The value of exponent 7 is 0.67 for the normalised distributions shown
on figure 4. The distance & is also the length at which the distribution
changes from diffuse damage (constant distribution) to a progressive
localisation of damage. Hence, it can be considered as a measure of the
size of the zone in which damage localises. The first order moment of
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the distribution /#(d) can be obtained numerically. Substitution of Eq.
(4) in the expression of the first order moment yields an equation where
the only remaining unknown is the correlation length.
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Fig. 5 : Internal, correlation length vs. number of broken bonds.

Figure 5 shows the evolution of this correlation length. It increases
with increasing damage.

3 Damage in elastic continua with voids

Two characteristics should be kept in mind when devising a continuum
model for quasi-brittle materials: growing voids and defects can be
captured with the variation of secant stiffness of the material and an
internal length should be present in the model. In the past, several
damage models have been proposed along this line (see e.g. Bazant and
Pijaudier-Cabot 1987, Frémond and Nedjar 1993). We shall concentrate
here on an extension of the model devised for elastic materials with
voids due to Cowin and Nunziato (1983).

This models introduces two cinematic variables, the displacement
u(x,t) and the change in volume fraction of solid material ¢(x,t). Each
variable possesses its own governing equation (here in the absence of
body forces):

pu (x,t)= G-~ i
pk¢ =h;

(5)

where u; is the ith component of the displacement, p is the current mass
density of the material, h; is the equilibrated stress vector, k is the
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equilibrated inertia, g is the equilibrated body force, and o is the stress.
Variable #; is the force associated to the variation of volume fraction
and can be related to classical elastic singularities such as a centre of
dilation (void) or a couple of opposite forces applied at the same point or
(crack). Note that essential and natural boundary conditions exists for
each governing equation and that Eq. (5-b) is quite similar to the
governing equation for the variation of damage in the model by
Frémond and Nedjar (1993). The elastic (free) energy reads:

1 1 1
W :Ecl.jklgljgk, +B8,€;¢ +~2fa¢,i¢,j +5§¢2 (6)

where Cyy, are the stiffness coefficients and (o,8,§) are material

parameters. The thermodynamic forces associated to the internal
variables (g;;,¢,¢ ;) are defined as:

Y odey’ dp’ " d¢;

(7

As pointed out by Cowin and Nunziato (1983), the stiffness coefficients
and the material parameters should depend on the reference (i.e. when
the material is free of loads) volume fraction. Therefore the influence of
damage, assumed here to represent void growth and cracking, can be
introduced by setting these parameters as functions of an internal scalar
damage variable (for simplicity) denoted as D. The new free energy
reads:

1 1
W = ‘i‘(l - D)Cijklgijgkl +ﬁ(D)6UgU¢ +—2—OC(D)¢J¢,J5U

! (8)
+5¢ (D)¢*
with the additional associated variable
oW
Voo e e 9
D )

Note that the influence of damage on the stiffness coefficients is similar
to what can be found in standard models (Lemaitre, 1992). For the sake
of simplicity, we will consider that the other material parameters in Eq.
(8) are not function of damage in the present analysis.

The growth of damage is similar to the usual evolution law. We define
a loading function and an associated evolution law:
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fx D)—JY‘F(z)dz-—D D= 54‘-9i (10)
T oY

with the classical Kuhn-Tucker conditions. ¢ is the damage multiplier
and F is an experimentally determined hardening/softening function.

Let us consider now the one dimensional version of such a model and
investigate the occurrence of bifurcation from a homogeneous state of
deformation, variation of volume fraction, and damage, denoted as

(80,¢0,D0). The rate constitutive relations (i.e. for infinitesimal
perturbations about the initial state) are obtained from Egs. (7-10):
6=(1-D"Eé - (Ee®)  F(Y*)é +pé
h=a¢, (11)
§=-E¢-pé

Let us restrict the analysis to static’s and omit the inertia terms in Eq.
(5). Substitution of Egs. (11) in the governing equations yields:

E(1-D%)—(Ee®)? F(¥®))é ). =0
g (1-D%) - (E"Y F(Y"))é  +B§ 1)

aé,xx = ﬁg + 6‘1’

Substitution of Eq. (12-b) into Eq. (12-a) yields the differential equation
governing the variation of volume fraction:

. B2 .
- — 1
a¢”"“"+[(E(1-D°)—(Ee”)2p(¥°)) > [0 =0 (13

This linear differential equation admits harmonic solutions if its
coefficients have the same sign. Assume that coefficients (§8,&) are
positive. The meaning of this assumption can be interpreted by
considering cases where damage is constant and the variation of volume
fraction is homogeneous. Egs. (5-b,6,7) yield:

0=-Feu=-5r (14)
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Hence the volume fraction diminishes as the total volume of material
increases due to straining.

The quotient in the fraction of the second coefficient of Eq. (13) is
negative upon softening. It follows that o must be negative if harmonic
functions are to be found for the variation of volume fraction and strain
distributions at the bifurcation (with the restriction that the free energy
Eq. (8) must be positive definite). Exponential solutions cannot comply
with the boundary conditions since the spatial derivative of the volume
fraction must be continuous at the loading/unloading interface. Same as
for the non local damage model (Pijaudier-Cabot and Benallal, 1993)
only bifurcation into harmonic modes of non zero wave length is
admissible. It is important to remark also that an internal length appears
in the coefficient . A dimensional equation shows that this coefficient
is homogeneous to the square of a length.

As a closing remark, let us point out that this model complies with the
requirements derived for the analysis of discrete systems and that a
plasticity model could be devised as well in the same spirit where the
variation of volume fraction could be interpreted as non linear dilatancy
effects.
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