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Abstract

The present paper describes the mathematical tools for detect-
ing the onset of discontinuous bifurcation and addresses the post-
bifurcation analysis of elasto-plastic solids. Under the assumption
of C%-continuity of velocities (displacements), constitutive expres-
sions are developed which relate the stress rate to the strain rate on
both sides of a spatial discontinuity which exhibits jumps of the de-
formations. Introducing the non-associated elasto-plastic damage
model of Drucker-Prager type, numerical calculations are presented
for the elastic/plastic bifurcation.

1 Introduction

It is widely accepted that when quasi-brittle materials are deformed
sufficiently, they exhibit spatial discontinuities in the form of local-
ized deformation. The formation of cracks and shear band observed
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in experiments in cementitious and granular materials are typical
examples of localized failure mechanisms.

In the beginning, the mathematical formulation of localization
criteria utilizing characteristic tensor is summarized (Rice (1976),
Runesson et al (1991)). The singularity of the localization tensor
determines the onset of strain localization as a bifurcation prob-
lem. In this paper we attempt to extend this concept to the post
bifurcation analysis in order to distinguish between elastic/plastic
bifurcation and plastic/plastic bifurcation as possible alternative
cases. An elasto-plastic softening model is employed to carry out
numerical simulations of the bifurcation behavior at the constitu-
tive level, imposing either bifurcation mode.

2 Onset of strain localization

For the analysis of jump conditions we introduce the concept of
a discontinuity surface, across which bifurcation of deformation is
permitted. In the bifurcated state, the velocity gradient field Vi
exhibits a jump across the discontinuity plane. This kinematic as-
sumption maintains C%-continuity of displacements which imposes
Maxwell compatibility such that the jump of the velocity gradient
must have the form

[Va]] =y M @N #0, [[¢]]= %(([Vﬁ]] +[[Va)l) (1)

The square brackets express the jump of quantity between the plus
and minus side of discontinuity surface (see Fig. 1). The unit
normal vector N defines the orientation of the discontinuity surface,
and the unit vector M indicates the polarization direction. The
indeterminate scalar 4 denotes the amplitude of the jump.

At the onset of localization, the material in both sides of the
discontinuity is assumed to be in the plastic state. Hence, the con-
stitutive behavior for both sides is expressed by the elasto-plastic
constitutive representation,

67 =Dgp:€t, 67 =Dg:¢”, [[6]] =Dep:[[€]] (2)
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in which D., denotes the elastic-plastic tangential operator, which
is in this study cast in the form of a non-associated flow rule.
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Fig. 1. Formation of discontinuity surface with N, M

Although the stress jump appears across the discontinuity sur-
face, the balance of linear momentum on the surface requires that
the surface tractions t remain continuous i.e., [[t]] = N - [[¢]] = 0.
From this balance condition, the well-established localization cri-
terion is obtained in the form

det(Q,) =0, Qu=N-D,-N (3)

In analogy to the wave propagation argument, the vector M de-
notes the polarization direction, while the amplitude of the jump
7 is related to the wave speed. The corresponding stationary cri-
terion of wave propagation is represented by

pczzM-er-M..—:O (4)

In the case of non-symmetric Q,, the condition of vanishing wave
speed ¢ — 0 may be reached before the characteristic tensor Q,,
experiences a singularity , which is referred to as loss of strong el-
lipticity in quasi-static localization (e.g. Willam and Sobh (1987)).
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It is important to note that the bifurcation statement is so far a
pointwise argument at the constitutive level. At the structural or
element level, on the other hand, the characteristics of localization
must be dealt with as a boundary value problem. This infers that
localization features such as shear banding should be searched as
one of the possible stationary states under the restriction of kine-
matic condition as well as the given boundary conditions (see Fig.

2).
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Fig. 2. Inelastic behavior at material and element level:
Fundamental criteria during deformation history
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3 Extension to post-bifurcation analysis

3.1 Different constitutive assumptions on each side:

Here, we expand the mathematical description of bifurcation be-
yond the onset of strain localization. To this end, the argument
starts with the elasto-plastic constitutive expressions which differ
now on each side of the discontinuity ( Fig. 3) in contrast to Eq.

(2)-
positive side: 6% =DJ, : ¢, DJ =Dg(o")
negative side: ¢~ =D_ : €7, D, =Dg(c7) (5)

‘in which Djp and D, denote the elasto-plastic tangential operators
on the positive and negative side of the discontinuity surface. This
condition reduces to the case of elastic/plastic bifurcation when we
consider the special case D}, — D, = E; — E; and D, — E..
3.2 Analytical formulation analogous to plasticity:

Now, let us consider the development of a constitutive represen-
tation of localization in the post-bifurcation regime. The deriva-
tion for the bifurcated material response is made in analogy to the
three postulates of the well-known flow theory for rate-independent

elasto-plasticity (Yoshikawa and Willam (1995)).
1. Additive decomposition of strain rate: €t =€~ +[[¢]] (6)
2. Flow rule for localized strain jump: [[¢]] = ¥[M ® NJ* (7)
3. Yield condition for stress jump:
F=M-[f]]=M@N]":[[s]]=0 (8)
Introducing the relation of stress rate jump and strain rate jump
[[6]] = 67 — 6~ = Df, : [[€]] — [[E;]] : ¢ into the yield condition,
the localization multiplier 4 is readily determined in terms of the
strain rate on either side of the discontinuity, yielding

_ IN@ M : [[E,]] : ¢ _ IN@M]°: [[Ep]] : €F (9)
M-QL-M M-Q, M
([E,]] = E; - E, =De_p—-D:;,
M-Qf,-M=[M@N]’:D/,:[N®M]
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constitutive law
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Fig. 3 Relationship between the stress and strain rates across
the discontinuity surface

This analytical result for 4 provides the important information
about the nature of the jump of strain rate. If the tangential op-
erators in both sides are the same, D_, = D, then the value of ¥
is equal to zero until the localization tensor turns singular. Right
at the onset of bifurcation, ¥ turns out to be indeterminate. This
statement corresponds to the previous equation (3) signaling the
onset of strain localization. On the other hand, when discontinu-
ities within the body develop so that the two tangential operators
deviate (D;, # D;*'P , then 7 becomes a finite value. During this
stage, N is designed the critical direction and M is the eigenvector

of Q.
It also follows that the difference of the strain rate tensors on
both sides of the discontinuity is expressed as follows:

[l=@:¢, [El=¥:¢& - (10

In this notation

M@ N’ ® [N @M : [[E,]]

® = M-Q},-M ’
_ M@N]'® [N®M]: [[E]]
v = Woon M (11)
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Fig. 4 Sketch of fundamental/bifurcation paths (upper);
Two strain tensors across discontinuity (lower).

Both of ® and ¥ are non-dimensional fourth-order tensors which'
provide the fundamental characteristics of discontinuous bifurca-
tion. Finally, the constitutive representations are

D, : &t
L ep
7 ‘{D;4u+@yt (12)

D_ :¢
_ ep
d {D&%L—%:ﬁ (13)
In view of each pair of these equations, it is obvious that two
different strain fields are provided for the single stress rate when the

tensors ® and ¥ are non-zero. This is a fundamental aspect for the
loss of uniqueness and post-bifurcation state due to the existence
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of a spatial discontinuity in the deformations. Fig. 4 schematically
depicts the stress-strain behavior involving the bifurcation path
and the relationship between the two strain tensors.

4 Elasto-plastic damage model

Here in this study, we employed the non-associated elasto-plastic
constitutive model for the tangential operator in the form
E.:m®n:E,

Dep:Ee_Ep’ EP:H +n:E.:m
P B

(14)

where the scalar quantity H, defines the plastic modulus, and the
"Drucker-Prager model is used for both the yield criterion f and
the plastic potential ¢ in the form

f=alh+VJl—k q=pL+VJ -k (15)

For o # 3 we have a non-associated flow rule and for . = 8 =0
the Drucker-Prager model reduces to the von-Mises criterion.

In order to represent the hardening and softening behavior of
quasi-brittle materials like concrete, we introduce the damage-
based model proposed by Wu and Tanabe(1990). This model re-
sorts to converting the Drucker-Prager expression to the Mohr-
Coulomb surface by the compressive meridian matching. The ma-
terial parameters such as the cohesion c, the internal friction angle
¢ and the dilation angle ¢ evolve, depending on the damage accu-
mulated with the plastic work. These are expressed

¢ = coezp|—(mw)?]
_ ] $ovV2w —w? w<1 ) YovV2w - w? w<1
¢——{% w>1,¢~{¢0 oS 1(16)

where m is a material parameter, and ¢, ¢y and 1)y mean the initial
values in the undamaged state. The values of ¢ and 7 increase
while ¢ decreases according to the increase of the damage parameter
w , expressing the progressive growth of microcracks.
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5 Numerical examples

Computational results of uniaxial compression of concrete-like ma-
terials are presented in Fig. 5. In the calculation, elastic/plastic
bifurcation as a possible bifurcation mode is assumed; whereby
the positive side in the plastic state while the negative side in a
state of elastic unloading. Under the deformation control of €™, the
response of the other variables such as 07,0~ and €~ are obtained

@ d =g (9
o+ o= (MPa) AL =0 tgppsacn
H,=0 i
B / I |
sF / / ” 05 [

y g\ |
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Fig. 5 Numerical results of uniaxial compression:

(a) 0,07 ~ € relation, (b) the plastic modulus H,,
(c) det(Q.,)/det(Q,), and (d) et ~ ¢~ relation
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from incremental calculations.

The numerical results indicate that the bifurcation point by
means of the singularity of det(Q,,) is first satisfied prior to the
peak point (H, = 0) due to the non-associativeness (¢o = 35 deg, v =
0) of the employed constitutive model. After onset of bifurcation,
the stresses o+, o~ as well as the strain €™, ¢~ deviate according to
the development of the non-dimensional operators & and V.

6 Concluding remarks

The example problem demonstrates the pointwise bifurcation of
stresses and strains across the discontinuity surface. Further work
will extend these concepts from the constitutive level to the struc-
tural level in boundary value problems, assuming volume fractions
of localized fracture regions.
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