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Abstract 
This paper addresses a fundamental problem that is at the root 
the applicability of fracture mechanics to concrete. On the basis 
of theoretical considerations, it quantifies the error introduced by 
a simple LEFM analysis vis a vis of a more comprehensive (albeit 
complex) NLFM one. The error is expressed in terms of peak load, 
which is the primary metric of practical interest to engineers. 

1 Introduction 

In the early days, fracture mechanics of concrete borrowed exten­
sively from the linear elastic fracture mechanics (LEFM) of metals. 
However, it was soon discovered that due to the presence of 
fracture process zone (FPZ) at the tip of a crack, LEFM may 
necessarily be applicable. In particular, when the size of the is 
appreciably less than the characteristic dimension D of the struc­
ture, crack extension can be quantified using LEFM procedures, 
otherwise, a nonlinear fracture mechanics (NLFM) analysis should 
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However, computational tools for NLFM analyses 
widely available, and yet engineers might be confronted 

of a cracked concrete structure. 
Subsequently, various guidelines have been proposed to deter­

mine modified LEFM parameters or the conditions under which 
LEFM is applicable (Carpinteri, 1982; Hillerborg, 1985; Shah and 
Jenq, 1985; Bazant et , 1986). 

Whereas fracture of concrete has under contin-
uous and active investigation for over fifteen years, there is little 
doubt that it is of most relevance in those structures where there 
is little or no reinforcement. In fact, properly engineered reinforced 
concrete structures are designed in such a way that reinforcement 
will most, if the load originally carried by concrete 

Prime examples of unreinforced concrete structures 
and bulk-heads, which are large concrete struc-

the authors' opm10n those structures are indeed 
vUJJC.L'-1..t,'-.i."-"UvU for application of fracture mechanics, be it 

In structures, because of smaller size of the FPZ, lim-
errors should occur under the assumption of LEFM and, in 

engineering analyses, limited errors are acceptable as long as they 
Therefore, it is useful to develop a procedure that would 

a 
lated to 
applied load. 

an approximate value of error 
analysis, compare it with the accepted errors re-

basic properties such as compressive strength and 

In this through theoretical considerations based on size 
effect LEFM NLFM, a simple geometry independent 
equation proposed to assess the error encountered in performing a 
LEFM analysis of a large concrete structure. The theoretical curves 
are first and contrasted with results of several finite 
element analyses. 

2 Theoretical considerations 

According to LEFM, stress singularity at the crack tip of a solid 
with a of length ao is characterized by the stress intensity 
factor 

where: 

(1) 
is the characteristic dimension of the structure, f ( ao) 
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is a dimensionless geometry shape 
mensionless crack length and a N is 
dimensional structures subjected to a point can be gener-
ically expressed as a N == P /bD where b is specimen thickness. 

maximum load is attained when K1 reaches 
ness of the material Jc= JE'G F it can 

nominal stress 

LEFM ( E' G F ) ~ 
aN,D == Dg(ao) 

lS 

plane stress and 
Young's modulus, 
(]"LEFM == 

N,D 

script to ..l..LL'-.&...l.v4l..4;Uv 

acteristic dimension; also, 
for plane strain 

similar procedure). 
Eq. 2 can rewritten a ~~~~~~-L~~~ 

(]"LEFM ( 1 ) ~ N,D _ 
--- D 

lch g( ao) 

1 
2 

where D* == Dg( ao) is 
teristic dimension of the 

LEFM geometry 

length of the material (Hillerborg 
sents the scale law structures 
it shows that 
proportional to 
the structure. 

EGF. 
== 7"{2 lS 

al., 1976). 

Let us consider now an elastic-softening 
geometry (i.e. the shape 
sion), containing a crack with an 

D; according to Planas 
size effect law (Bazant, 1984; Bazant 

as 

etry independent nominal maximum stress a-:i:M is 

0-NLFM == )g'(a )aNLFM == 
N,D Q N,D ( 

E'GF )~ 
Cf+ P(:o})D 
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where aNLFM == P NLFM /bD g'(o: ) is the first derivative of g(o:) 
N,D max ' 0 

evaluated at o: == o:o, CJ is the elastically equivalent crack extension 
at load in an infinitely large structure (Bazant and Kazemi, 

Planas and Elices, 1991 ), and D** == Dg( a 0)/ g'( a 0) represents 
geometry independent characteristic dimension of the structure. 
4 is strictly applicable when CJ is small compared with (as 

large structures) gives an approximation of the maximum 
nominal stress for larger CJ/ D ratios (Smith, 1995). 

Since the applicability of the NLFM to concrete structures de-
pends essentially on size of the specimen relative to the 
size, which in turn depends on the material characteristic length 
Zeh, it is worth to the structure size to Zeh· This can be 

.... ...., .......... "-'.__._ from Eq. 4 by normalizing the nominal stress to the tensile 

a-NLFM 

~ 

ff 

ff 

( 
1 ) ~ 

!::1_ + D** 
lch lch 

(5) 

Since CJ is a material property (Bazant and Kazemi, 1990), and 
depends on the shape the softening curve (Planas and Elices, 

, it could be as 

(6) 
Zeh takes into account the mechanical properties of the ma­

and ""f is a dimensionless parameter which takes into account 
shape of the softening law . 

....... ~ ......... ~~- Eqs. 5 can be rewritten as 

( 
1 ) ~ 

ft' - D** 
""J + z;;: 

(7) 

Revisiting Eq. 3, it can also be expressed in terms of D**, and 
nominal stress a-N n 

) 

a-LEFM O"LEFM ( 1 ) ~ 
_!'L_ = ,jg' ( eto) j £ = f :· (8) 

the ratio between the maximum loads obtained from a 
and NLFM analyses (Eqs. 8 and 7), which varies with the 

structure dimension, can be expressed by 

(5-NLFM 
N,D 

O"LEFM 

~ 
aNLFM 

N,D 

LEFM 

p NLFM 
(9) 

max 
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Eq. 9, valid for all positive specimen geometries, shows that the 
load ratio depends on the material by means of cf is indepen­
dent of the specimen geometry if the characteristic dimension of the 
structure is expressed as D**. Furthermore, when is normal-
ized to Zeh, the load ratio depends only on the K f which 
is related to the shape of the softening curve. 

Following Planas and Elices ( 1992), a lower cf is related 
to the critical crack opening We 

7r E' 
CJ> -w2

-
- 32 eGF 

( 

and expressing the critical crack opening in of character-
istic crack opening as We == c2Weh == c2G F /ff, where c2 is a dimen­
sionless parameter, Eq. 10 yields 

7r 2E'GF 
CJ >-c -­

- 32 2 JI2 
and thus 

1) 

(12) 

Using the lower bound value of KJ from Eq. 12, Eq. 9 can be rewrit­
ten as 

p LEFM 

_m_ax_ > 
p NLFM 

max 

3 Comparison between theory and numerical results 

The theoretical relations previously obtained are now contrasted 
with the results of a numerical parametric study on CT (Fig. la,b) 
and TPB specimens (Fig. 2) performed by Plizzari and Saouma 
(1995b) using MERLIN (Reich et al., 1994). The study referred 
large specimens with different dimensions characterized by a bilinear 
softening law where the values of the governing parameters were 
changed, as summarized in Figs. lc,d,e,f. 

Fig. 3a shows the relationship between KJ and D** /Zeh as obtained 
by all the FE analyses with c2 == 5 that allowed a good fitting of 
several experimental results on concrete specimens (Plizzari 
Saouma 1995). We observe that the numerical results diverge 
increasing values of the D** /Zeh ratio; this dispersion is in great 
part caused by the fact that, in all cases, the mesh topology was 
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1. Mesh and '""'" ............. ..._, .............. ....., ........... adopted for numerical parametric 
study of CT (a,b,c), bilinear concrete softening law 
for three values of fracture energy G F ( d), 

w c ( e) and tensile strength f; ( f) 
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0 

s 
Specim. D Oo s 

[m] [m] [m] 

vs 6.35 2.0 25.4 

s 12.70 4.0 50.8 

L 25.40 8.0 101.6 

VL 50.80 16.0 203.2 

2. Meshes adopted for the numerical parametric study of 
Point Bending models 

kept identical whereas the size was linearly scaled to u~•_,vJ.J.J.J...l . .l..V'-..1..<AllJ•..., 

larger D (Fig. lb). As a result, larger models may not have a 
enough mesh at their crack tip to capture the FPZ and the 
;;, f adequately. However, it should be noted that, for large .. "''Lu.,.,,. 

Kf varies between 1.5 and 2.0 (the value KJ == 1.8 was chosen as 
reference value). For c2 equal to 7.5 and 10, KJ is larger but its 
was not determined in that study since only few numerical 
were available. From Eq. 12, a lower limit of ;;, f corresponding 
c2 == 5 is 2.45, which is higher than the numerically 
one, while for c2 == 7.5 and 10, the values of "'J are 5.52 
respectively. 

Fig. 3b contrasts the theoretical prediction of the normalized 
ometry independent stress ffN,D/ ff, as obtained by Eqs. 8 
NLFM and LEFM respectively, with all the numerical results 
tained for both CT and TPB specimens. The theoretical 
from Eq. 7 are plotted for different values of Kf : 1.8, 2.45, 5.52 
9.82. We observe that the theoretical LEFM curve matches 
numerical LEFM results very well, and that the theoretical 
curve for ;;, f == 1.8 matches numerical NLFM results 
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Fig.3. Comparison of the theoretical predictions with the numerical 
results 

c2 = 5. Also, the theoretical curve for ""f = 2. 45, as obtained from 
Eq. 12, is very close to the numerical results. On the other hand, 

curves for ""! = 5.52 and 9.82 underestimate the numerically 
determined maximum load; however, it should be noted that the 
adopted meshes probably become too coarse when a large We (and 
thus a large FPZ) is adopted since the FPZ develops in a very small 
number of elements. 

Fig. 3c contrasts the theoretical predictions of the P ~::M / P :~xFM 
(Eq. 9), with all the numerical results. Again, it should be noted 
that the theoretical curve matches well to all the numerical results 
obtained with c2 = 5 for both ""! = 1.8 and 2.45 when the D** /Zeh 
ratio is larger than 3, and overestimates the error for smaller ra­
tios. The same good match is not obtained with c2 = 7.5 and 10 
but, as mentioned, the coarseness of the adopted mesh could have 
influenced the numerical results. 
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4 Concluding remarks 

On the basis of the LEFM and NLFM scale laws for concrete, a 
theoretical expression to assess the error encountered in performing 
a LEFM analysis of a large concrete structure was proposed (Eq. 9). 
This very simple equation, valid for positive specimen geometries, 
shows that the load ratio P !::M / P :~:M , which varies with struc­
ture dimension, depends only on the material and is independent 
of specimen geometry if the characteristic dimension of the 
ture is expressed in terms of D**. Also, if D** is normalized to 
characteristic length of the material Zeh, the load ratio depends 
on the parameter K, f which is related to the shape of the softening 
curve. 

A comparison with numerical results obtained by the authors 
(Plizzari and Saouma, 1985b; Fig. 3c), shows that the theoretical 
P !::M / P :~:M ratio matches all the numerical results well when the 
D** /lch ratio is larger than 3, and overestimates the error for smaller 
ratios. 
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