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Abstract

In the context of capturing crack development modeled on the cohesive crack
concept, it appears that the issue of how to represent a displacement disconti-
nuity in the FE—environment is crucial for the development of an efficientand
robust solution procedure. In the present paper, the qualitative behavior of
two crack band models are investigated with respect to the implementation
with embedded approximation, which is considered as an alternative to
smeared and other discrete crack representations. The formulation is based
onamixed variational formulation that is extended to include internal discon-
tinuities. The major advantage compared to the inter—element representation
is that advanced mesh (re)alignment strategies are totally avoided and un-
structured meshes are sufficient. The method is applied to two different frac-
ture models at the analysis of a notched concrete plate.

1 INTRODUCTION

A variety of models have been proposed for describing semi-brittle fracture
in concrete in the spirit of the “fictitious crack” concept of Hillerborg et al.
(1976). In this context, we distinguish two main philosophies: On one hand,
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discrete crack models, based on displacement discontinuities, which are rep-
resented as interface relations that are established in a successive fashion as
the crack develops. The classical approach s to introduce such interface mod-
els along inter—element boundaries. Alternatively, the cohesive crack is em-
bedded in the element, cf. Klisinski el al. (1989) and Dvorkinetal. (1990). On
the other hand, smeared crack models are represented as continuum tangent
stiffness relations that employ a characteristic element diameter in order to
convert the crack opening to equivalent element strains, cf. Rots and de Borst
(1987) and Dahlbom and Ottosen (1990). In this way an equivalent continu-
um softening modulus is obtained.

On the basis of the former strategy, two cohesive crack models were
derived, by Larsson and Runesson (1995), from a continuum with regularized
strong discontinuities, cf. Larsson et al. (1993). The basic idea behind this de-
velopment was thus to introduce discontinuities along inter—element bound-
aries, which are realigned according to the result of bifurcation analysis for
each load increment. However, it turns out that the required mesh realignment
procedure is cumbersome to implement is practice, whereby an alternative
strategy is warranted.

The alternative strategy is the “embedded” localization band, where the
displacement interpolation allows for a discontinuity within the finite ele-
ments. Such a finite element method can conveniently be derived from a three
field variational formulation, which incorporates the weak forms of the local
equilibrium equation, the strain—displacement relation and the constitutive
relationship between the stress and the strain field, as discussed by e.g. Be-
lytschko et al. (1990), Simo and Rifai (1990) and Simo et al. (1993). By de-
coupling the stress field from the remaining fields via a projection argument
on the element level, the resulting FE—method does, in fact, preserve the con-
ventional displacement topology. The major advantage, as compared to the
inter—element representation, is that advanced mesh (re)alignment strategies
are totally avoided and unstructured meshes are sufficient.

2 COUPLED DAMAGE AND PLASTICITY

Denoting by o the nominal stress tensor of the considered inelastic material,
the constitutive law for ¢ may be written in rate form

g=D:¢ 1)
where D is the tangent modulus stiffness tensor, which accounts for elastic
plastic response coupled to damage. As to the damage, we introduce the (iso-
tropic) damage variable a as a measure of distributed failure in the material
(0 = a < 1, where a = Oindicates the virgin material, whereas a = 1indi-
cates that the material has undergone complete deterioration). The relation
between the “nominal stress” o and the “effective stress” ¢ is given in the
usual way as
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=(1-ajp 2)

If the yield criterion is expressed in terms of ¢ and a suitable set of internal
hardening variables, it is possible to express D (as introduced in (1)) as

{(l—a)D 11)6 g f:D¢ if f:D°:é>0 (P)

e ne. €)]
(1 —aD if f:D¢:¢<0 (E)

where (P) and (E) stand for ”plastic” and “elastic” loading, respectively. In
(3), D¢ is the elastic stiffness modulus tensor, fis the gradient (in effective
stress space) of the yield function F, whereas g is defined as

=(1—af+g,C:0 , C‘3=(De)"1 4)
Here, g is the flow direction in accordance with the evolution of damage,
whereas g , represents the rate of damage development. This is defined via

the damage law
' a=0 (E) (5a)

d=illgAf:D“:é P (5b)
Within the proper thermodynamic framework, we may define

g4 (0,4,a) > 0, where A isthe ”damage force” that “drives” the damage de-
velopment. Occasionally, A isdenoted the "rate of damage” energy (in analo-
gy with the notion of “rate of fracture energy” in the context of fracture me-
chanics). It is defined by

A= %a ce:o (6)
Finally, the (positive) generalized plastic modulus 4 is defined as
h=f:D°:f+H (7

where H is the hardening/softening modulus.

3 MIXED VARIATIONAL FORMULATION

Consider a solid, that occupies the domain £ with external boundary I as
shown in Fig. 1. Itis assumed that the displacement field u is smooth except
that is may be discontinuous across the surface I'y with the unit normal . The
discontinuity surface divides £2 into the sub—domains 2 _ and Q | insucha
way that nis pointing from 2 _ to ... We now propose the decomposition of
u(x) into a continuous part u.(x) and another part containing the discontinu-
ity, i.e.
u(x) = ux) + [u]lHyx) (8)

where [u] is the constant jump of u(x) across I’y and H(x) is the Heaviside
function.
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Upon introducing a narrow band zone £, (b = band) along I's with the
width J, as shownin Fig. 1, aregularized version of the strain rate, cf. Larsson
and Runesson (1995), can now be expressed as

=g + %(n[u] +[uln) if xEQ, 9)
where &, is the continuous part defined as
g = Vu, = %(Vuc +u.V) (10)

Fig.1  Solid with regularized singular surface I’

In order toinvoke the regularized strain into the finite element formulation,
itis desirable to construct the discretization such that nodal displacements are
continuous across inter—element borders, whereas strains consists of compat-
ible and incompatible (=discontinuous) portions. To this end, we resort to the
enhanced strain approach, Simo and Rifai (1990), and propose the three field
variational formulation of equilibrium, kinematical and constitutive relations
as follows:

[s'c dQ — W) = 0, &= Vu', Vu' € V(11a)
2
fr’:(Vsu’ - s)dQ =0 , VreS (11b)
Q
Js’:(— T+ o(e))dQ =0 , V¢ €EE (11¢)
Q

where the displacements, stresses and strains (u,7,¢) belongs to the class of
functions ' X § X E. In the present context, (u,7,&) may be considered ei-

ther as the updated values at the end of each time step., e.g. T = " T 7, or as the
time rate of the state variables, e.g. 7 = 7. In the former situation,

o :="Tlg("*l¢), is the stress obtained from integration of the constitutive
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relations, whereas in the latter situation o : = 9(¢) is the stress rate that is ob-
tained from the tangent relation (1).

The function spaces V/, S and E are defined as follows: Vis the usual space
of compatible (in particular continuous) displacements, whereas .S contains
square integrable stresses. As to E, we are guided by (9) to propose thateach
strain ¢’ € E is constructed in terms of a compatible portion and an incom-
patible portion, defined as

g=¢.+& ,&.=Vu uwev (12)

where the enhanced portion £’ € E has the structure
=) 1 ; 1]
.+ +v'n xe
g = { < ¥ 251 ) b

(13)
& x €, =0\,

The regular part ', is assumed to be square integrable in ¥, whereas the vec-
tors v’ are square integrable along /.

From the arguments in Simo and Rifai (1990), the function spaces S and E
are chosen orthogonal in L,(£2). Hence, the stress field 7 € S can be elimi-
nated between (11ac), cf. Larsson and Runesson (1995), whereby (11) may be
rephrased as

]e’cio(s)d.Q - W,,u')=20 (14a)
Q
]E’C:a(e)dQ + jv’ “(n-o(e))dl =0 (14b)
Q T

4 FINITE ELEMENT FORMULATION

4.1 Enhanced CST-element
The region 2 is discretized into NEL finite elements Q,., ¢ = 1,..., NEL.
For a specific element, the displacement and the corresponding compatible
strain are interpolated by using the standard compatible shape functions N,,
which gives
u=Np., &&=Vu=Bp, (15)

In this paper, we restrict to piecewise linear approximation, corresponding

to the CST—element, for the displacement. Moreover, the stresses 7 € S and

the enhanced strain € € E are chosen as piecewise constant (withineach £2,)
such that
NEL NEL NEL

T= D AT, Ee= ) Adee s V= D xebe (16)
e=1 e=1 e=1
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where . is defined as

17)

0 otherwise

1 iff xe,
-

Fig. 2  Constant strain triangle with embedded discontinuity

Since S and E are chosen orthogonalin L,(£2), we obtain the ”orthogonal-
ity” (or design) conditions that must be satisfied for each element
e=1,..,NEL

o _ 1 A,
Ece ™= 2., L.

Upon inserting this expression into (14b), while observing that o takes the
constant values o, and g, in 2., and in £, , as indicated in Fig. 2, respective-
ly, we obtain the simple relationship

(v'e +v'm), e = A, =m(Q,), L.=ms) (18)

—4€<1 - %)(qc - qb) =0 = f4: =4, (19)

ISE
where g = o - n. Hence, the traction is ensured to be continuous across the
localization zone. In fact, the traction is continuous across any surface in £2,
with the normal n.

4.2 Finite Element Equations
Uponinvoking the resultin (18) into (12) and (13), we may express any strain
g, € E(Q,) as

e, =Bp.+ (% — %)C v, x€Q,,

go=Bp.,— Tli—Cev'e xE€EQ.,=2Q,

se

g, = (20

where C,v’, is the matrix representation of the tensor (rv’, + v’ n)/2if only
shear strains are introduced instead of their tensor counterparts.

Next, by inserting the preceding discretizations into (14ab), we arrive at
the discretized formulation
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NEL NEL

A gpeve) = A | bepeve) —f* | =0 (21a)

Fe(Pe,ve) =0 e =1,2,..,NEL (21b)
where the internal element forces b, and », may be linearized to give the
coupled system

db. |=| K. F,. ||dpe (22)
dr, FI' H, ||dv,
In (22), we have introduced the matrices
K, = Ae(l -0 )BTD B, + A, 9BD B, (23)
Lse Lse
—_ Ae — 0 T _ pT

F,= —-%2¢[1-2 (BeDacCe B'D ,,Ce) (24)

lS€ lse 4

net- et o

In (25), we have introduced the algorithmic acoustic matrix
0, = CID,C,, which is the matrix equivalent of the tensor @, = n - D, - n

4.3 Analysis of Tension Bar

The developed theory for the CST—-element can be applied directly for the
modeling of semi-brittle fracture of a uniaxially loaded tension bar, that is
subjected to prescribed end displacement, as shown in Fig. 3. The stress—
strain relation is assumed to be bilinear with constant elastic modulus E and
softening modulus H. The whole bar is analyzed as one single element with
linear approximation of # in terms of the end displacement p, attherightend,
while the left end is fixed, i.e. £, is constant along the bar. The corresponding

axial force (stress) is b, (=0), and the tangent stiffness relation is obtained
formally from (22) as

A

b, = Kepe , K.,=K,—FH! (26)
(@) (b)
ocalization band R
r of width &
g B }—= R 1
L

- o
i §

Fig.3  (a) Tension bar subjected to prescribed end displacement
(b) Linear structural decay of tensile strength
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The pertinent expressions for K,, F, and H, are given in (23), (24) and
(25). Moreover, assuming that elastic loading takes place within the band
whereas elastic loading occurs outside together with B, = 1/L, C, = 1 and
A, = I, = L, we obtain in quite straightforward manner

5 E
K = T 1 == =
T B E i )

L E] E

5 CRACK MODELS BASED ON THE RANKINE CRITERION

5.1 Rankine Criterion — Preliminaries

Within the constitutive framework outlined above, we shall consider the (ten-
sile) fracture criterion of Rankine for the modeling of semi-brittle fracture in
concrete. The criterion is expressed in the ”current” principal coordinates as

F=6,—0,+K() | 8=+ (28)

where 0, is the tensile strength, K is an “overstress” which is associated with
the hardening variable », whereas S is the material parameter that governs the
evolution of damage.

Subsequently, we identify two different special models from the damage—
plasticity coupling described above:

The first model is defined by purely plastic response, which is obtained by
setting § = oo, and assuming H to be a fictitious material parameter that has
to be determined as part of the calibration process.

The second model is defined by choosing the simplest possible damage
law and assuming that the virgin material is perfectly plastic,i.e. H = 0. In
this case, itis the damage parameter Sthat has to be determined as a part of the
model calibration.

5.2 Calibration of Crack models
The models are calibrated in mode [, with due consideration to the actual en-
ergy release within the crack band. It appears that, for the softening plasticity
model, this localization mode is, in fact, the critical one with respect to the
critical band orientation at uniaxial stress conditions for incipient fracture.
For the damage—plasticity model, a slight rotation from the largest principal
stress axis is obtained due to damage development. This rotation is, however,
shown to be vanishingly small when the band width tends to zero, as dis-
cussed by Larsson and Runesson (1995). Hence, it is sufficient to consider a
uniaxial tensile test, where the localization mode is prescribed to mode I.
To this end, let us assume that the bar in Fig. 3 has been subjected to the
prescribed displacement p, = r, corresponding to the support reaction
b, = R, such that the peak stress has been reached along the entire length of
the bar. For simplicity, it is assumed that the post—peak response is linearly

softening with the structural modulus M < 0, i.e. R = Mr with M = K,.
%06




Softening plasticity model: For this model, we obtain in uniaxial stress

__H
Er=r3m 29)
which with K, = M in (27) yields
- Ey
H-_L (30)
0 % -M

We thus obtain the unique element response R = M7 whenever the ratio
H /4 satisfies (30). Moreover, the elastic stiffness of the baris E/L. For a very
short specimen or very large elastic modulus, we then conclude that
E/L > IM\. In this case it follows trivially from (30) that we may choose

H/6 = M.
Damage—plasticity model: In this case we set H = 0. This gives
Er= — % (31)

which with K, = M in (27) yields

6 = —-at(j}/jw%(I —%)) (32)

It appears, once again, thatif E/L > M|, that the value of S and 6 may be
obtained from the simple relationship S8 = — o,/M.

Remark: In the case that the elastic deformation of the test specimen is
neglected (or if E/L > IMl), we obtain the calibration that is pertinent to the
fictitious crack concept of Hillerborg et. al. (1976). This means that H/J (or
S0 for the damage—plasticity model) is calibrated with respect to the released
fracture energy W, within the crack band, which (due to the assumption about

linear softening) gives

2 W
E:M:——lat or S(S:—?__izz_.if

5 W,
6 NUMERICAL EXAMPLE OF MIXED MODE FRACTURE

Both models have been implemented in the finite element context, where the
numerical treatment is based on the fully implicit method. We have analyzed
the 50mm thick notched concrete specimen, as shown in Fig. 4, when tension
and shear deformations are prescribed simultaneously such that the ratio
p./ps = 1iskept constant throughout the analysis. The present specimen has
also been tested experimentally by Nooru—-Muhammed (1992) with special
attention to mixed mode fracture.

In the experiment, the plate was clamped to the test rig (adhesive plastic
glue), whereby displacements are prescribed as shown in Fig. 4. The elastic
properties of the (macroscopic) material are taken as E = 30GPa and Pos-
sion ratio ¥ = 0.20. The tensile yield stress of the virgin material is
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o, = 3.3MPa and the “fictitious crack calibration” was adopted to deter-
mine the values of H/d and S6 with W, = 100J/ m? for the bi-linear decay of
the tensile stress in the cohesive zone.

As to the loading, the “plastic zone” constraint, cf. Larsson (1995), was
used to control the load increments such that onset of fracture is monitored
element—wise in a successive fashion as the loading proceeds. Thereby, the
orientation of the internal discontinuities are determined on the basis of the
stress state that is present when onset of fracture occurs.
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Fig. 4  Geometry, loading and mesh of analyzed concrete plate
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The qualitative behavior of the models are compared for a fixed mesh with
508 elements (Fig. 4) when the band with is set to 2mm. The tensile as well as
the shear load responses are given in Fig 5ab along with the corresponding
experimental results. Note that a quite good agreement is obtained with the
experiment. In particular, the damage—plasticity model exhibits a slightly
more flexible behavior than does the softening plasticity model; especially, in
the right end of the post—peak response. The reason is that the stiffness va-
nishes for the damage—plasticity model when the material has become com-
pletely deteriorated, i.e. when a = 1. 0. As to the tensile response curve, a
discrepancy in the pre—peak behavior is obtained due to a different measure-
ment of the “overall” crack opening. Moreover, Figs. 7ab shows the deforma-
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tion and crack pattern at the final load—step for the damage—plasticity model,
which gives a fairly realistic picture of the global deformation and crack pat-
tern pertinent to the experiment.
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Fig. 5  Tensile and shear response of models as compared to exper-
imental behavior: (a) reactive tensile force versus tensile dis-
placement, (b) reactive shear force versus shear (=tensile) dis-
placement

P KN e 4 = 0.5 mm P. KN = d=0.5mm

25 s =

/\ e = 4= 1.0 mm — = (=1.0mm

eeee d=20 35 ceee d=20m
IV =] iR
1544 25 -
10 l/ N i 20 / ]
A
X P
0 \X\ l: 74 '

I I

Experiment Experiment

kl

o 0
s0 20 40 60 8¢ 100 O 20 40 60 & 100

Dy um p;  Um

Fig. 6 Model sensitivity to the choice of band width: (a) reactive ten-
sile force versus tensile displacement, (b) reactive shear force
versus shear (=tensile) displacement

Finally, we have studied the sensitivity of the models with regard to the
choice of band width when the damage—plasticity model is considered. To
this end, we consider the choices & = 0. Smm, 1mm, and 2mm. From the cal-
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ibration of the model the same model behavior will be obtained in mode 1.
However, the mixed mode behavior becomes “stiffer” for smaller ¢, which
was also detected for the “inter—element” approach adopted by Larsson and
Runesson (1994). This feature of the model is clearly demonstrated in Fig.
6ab, although the general impression is that the response in quite insensitive
to the choice of 0.
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Fig. 7  Global deformation (with exaggerated displacement scale) and
crack patterns at final load step for damage plasticity—model

7 CONCLUDING REMARKS

On the basis of the developments in Larsson and Runesson (1995), we have in
the present paper considered two cohesive crack models in the framework of
an embedded localization band. Key ingredients of our analysis are: The con-
cept of discontinuous approximation for capturing localization. The mixed
three field variational formulation where a discontinuous strain field was
introduced in terms of the element internal variable v,.

In this way, both models were implemented for an enhanced CST—element,
where, in fact, the the classical localization condition is naturally retrieved by
the element on the basis of the chosen mixed finite element discretization. We
note in particular that, if localization is possible, then the internal discontinu-
ity can be derived explicitly for the rate behavior, in terms of the compatible
portion of the strain rate. Moreover, if elastic unloading takes place, v, = 0
and the element retains the characteristics of the ordinary CST-element.

The models were successfully applied to the analysis of a notched concrete
plate. The numerical results obtained from both models shows a fairly good
agreement with the experiment.

910




8 REFERENCES

Belytschko, T., Fish, J., and Englemann, B.E. (1988) A finite element with
embedded localization zones, Comp. Meth. Appl. Mech. Engng. 70,
59-89.

Dahibom, O., and Ottosen, N.S. (1990) Smeared crack analysis using gener-
alized fictitious crack model, J. Engng. Mech. ASCE 116, 55-76.

Dvorkin, E.N., Cuitino, A.M., and Gioia, G. (1990) Finite elements with dis-
placement interpolated embedded localization lines. Int. J. Num. Meth.
Engng. 30, 541-564.

Klisinski, M., Runesson, K., and Sture, S. (1991) Finite element with inner
softening band. J. Engng. Mech. ASCE 117, 575-587.

Hillerborg, A., and Modéer, M., and Petersson, P.E. (1976) Analysis of crack
formation and crack growth in concrete by means of fracture mechanics
and finite elements. Cement and Concr. Res. 6, 773-782.

Larsson, R., Runesson, K., Ottosen, N.S. (1993) Discontinuous displacement
approximation for capturing plastic localization. Int. J. Num. Meth.
Engng. 36, 2087-2105.

Larsson, R. and Runesson, K. (1995) Cohesive crack models for brittle mate-
rials derived from localization of damage coupled to plasticity. Int. J.
Fracture 69, 101-121.

Larsson, R. (1995) A generalized fictitious crack model based on plastic lo-
calization and discontinuous approximation, accepted for publication in
Int. J. Num. Meth. Engng.

Larsson, R. and Runesson, K. (1995) Element—embedded localization band
based onregularized strong discontinuity, submitted to J. Engng. Mech.,
ASCE.

Nooru—Mohamed, M.B. (1992) Mixed Mode Fracture of Concrete: An
Experimental Approach. Ph. D. dissertation, Delft University of
Technology.

Rots, J. G., and de Borst, R. (1987) Analysis of mixed—mode fracture in con-
crete. J. Engng. Mech. ASCE 113, 1739-1758.

Simo, J.C., and Rifai, M.S. (1990) A class of mixed assumed strain methods
and the method of incompatible modes. Int. J. Num. Meth. Engng. 29,
1595-1638.

Simo, J.C., Olivier, J., and Armero, F. (1993) An analysis of strong disconti-
nuities induced by strain—softening in rate—independent solids. Com-
putational Mechanics 12, 277-296.

911






