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Abstract 

the context of capturing crack development modeled on cohesive crack 
concept, it appears that the issue of how to represent a displacement disconti­
nuity in the FE-environment is crucial for the development of an efficient and 
robust solution procedure. In the present paper, the qualitative behavior of 
two crack band models are investigated with respect to the implementation 
with embedded approximation, which is considered as an alternative to 
smeared and other discrete crack representations. The formulation is 
on a mixed variational formulation that is extended to include internal discon­
tinuities. The major advantage compared to the inter-element representation 

that advanced mesh (re )alignment strategies are totally avoided and un­
structured meshes are sufficient. The method is applied to two different frac­
ture models at the analysis of a notched concrete plate. 

1 INTRODUCTION 

A variety of models have been proposed for describing semi-brittle fracture 
concrete in the spirit of the "fictitious crack" concept of Hillerborg et al. 

(1976). In this context, we distinguish two main philosophies: On one hand, 
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discrete crack models, based on displacement discontinuities, which are rep­
resented as interface relations that are established a successive fashion as 

crack develops. The classical approach is to introduce such interface mod­
along inter-element boundaries. Alternatively, the cohesive crack is em-

bedded in the element, el al. (1989) and Dvorkin et al. (1990). 
other hand, smeared models are represented as continuum ........... A_,_,..,,,.._ ... 

u .... ,, ......... .,.._,.., relations a characteristic element diameter in order to 
convert the crack opening to equivalent element strains, cf. Rots and de Borst 

987) Dahlbom Ottosen 990). In way an equivalent continu-
um softening modulus is obtained. 

the basis of the former strategy, two cohesive crack models were 
by Larsson and Runesson 995), from a continuum with regularized 

discontinuities, cf. Larsson et al. (1993). basic idea behind de-
V!JA . .11. ......... ,L. .... was thus to introduce discontinuities along inter-element UH·~···~ 

are realigned according to the of bifurcation analysis for 
load increment. However, it turns out that required mesh realignment 

is cumbersome to implement is practice, whereby an alternative 
strategy is warranted. 

alternative is the "embedded" localization band, where the 
displacement for a discontinuity within the finite ele-
ments. Such a finite method can be derived from a three 

variational weak forms of the local 
equilibrium equation, and the constitutive 
relationship between as discussed by e.g. Be-
lytschko et al. (1990), 990) Simo et al. (1993). By de-
coupling the stress field from the remaining via a projection argument 

element level, the resulting FE-method does, in fact, preserve the con­
...,.._ ............. ,L .......... displacement topology. The major advantage, as compared to the 

inter-element representation, is advanced (re )alignment strategies 
are avoided and meshes are sufficient. 

2 COUPLED DAMAGE AND PLASTICITY 

Denoting by u the nominal stress tensor of the considered inelastic material, 
constitutive law for u may be written in rate form 

a= D: i: (1) 

where is the tangent modulus stiffness tensor, which accounts for elastic 
plastic response coupled to damage. As to the damage, we introduce the (iso­
tropic) damage variable a as a measure of distributed failure in the material 
( 0 :5 a :5 where a = 0 indicates the virgin material, whereas a = 1 indi­
cates that the material undergone complete deterioration). The relation 
between the "nominal stress" u and the ''effective stress" u is given in the 

way as 
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(J = (1 - a)a (2) 

the yield criterion is expressed in terms of o and a suitable set of internal 
hardening variables, it is possible to express D (as introduced in (1)) as 

D = , h (3) {(
1 - a )De - lve : g De if f: De : i > 0 (P) 

( 1 - a )De if f: De : i < 0 (E) 

where (P) and (E) stand for "plastic" and nelastic" loading, respectively. 
(3), ne is the elastic stiffness modulus tensor, f is the gradient (in effective 
stress space) of the yield function F, whereas g is defined as 

A -1 
g = ( 1 - a 'f + gA Ce : o ~ ce = (De) 

Here, g is the flow direction in accordance with the evolution of damage, 
whereas gA represents the rate of damage development. is defined via 
the damage law 

a=O 

a = kg.,J:De: t (P) 

(Sa) 

(Sb) 

Within the proper thermodynamic framework, we may define 
gA(a,A,a) > 0, where A is the "damageforce"that"drives"thedamagede­
velopment Occasionally, A is denoted the "rate of damage" energy (in analo­
gy with the notion of "rate of fracture energy" in the context of fracture me­
chanics). It is defined by 

A= !o:ce:o 
Finally, the (positive) generalized plastic modulus his defined as 

h = f: De :f +H 

where His the hardening/softening modulus. 

3 MIXED VARIATIONAL FORMULATION 

(6) 

Consider a solid, that occupies the domain Q with external boundary as 
shown in Fig. 1. It is assumed that the displacement field u is smooth except 
that is may be discontinuous across the surface I's with the normal n. The 
discontinuity surf ace di vi des Q into the sub-domains Q _ and Q + in such a 
way that n is pointing from Q - to Q +. We now propose the decomposition of 
u(x) into a continuous part uc(x) and another part containing the discontinu-

1.e. 
u(x) = Uc(X) + [u]Hs(x) (8) 

where [u] is the constant jump of u(x) across I's and Hs(x) is the Heaviside 
function. 

901 



Upon a narrow zone Qb = band) along the 
o, as shown 1, a regularized version of the strain rate, 

995), can now be expressed as 

t = + 2~ (n[u] + [u]n) if x E Qb (9) 

where tc is ...,'V ........ JL ... JLU.'V .. ~"' part defined as 

= =!(Vue+ UcV) (10) 

Fig. 1 

order to regularized strain into the finite element formulation, 
desirable to construct the discretization such that nodal displacements are 

continuous across inter-element borders, whereas strains consists of compat­
ible and incompatible (=discontinuous) portions. To this end, we resort to the 
enhanced strain approach, Simo and Rifai (1990), and propose the three field 
variational of equilibrium, kinematical and constitutive relations 
as follows: 

c' • ...., c. ') = 0 t' c = \/Su', Vu' E V(lla) 

' - e)dQ = 0 , Vr ES lb) 

: ( - r + a(t))dQ = 0 , Vt' EE le) 

where displacements, stresses and strains (u, r,t) belongs to the class 
functions V x S x the present context, (u, r,e) may be considered 

ther as the updated values at the end of each time step, e.g. r = n + 1r, or as the 
time rate of the state variables, e.g. r = f. In the former situation, 
o: = n + + 1e ), is the stress obtained from integration of the constitutive 
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relations, whereas in the latter (J : = o( i) is the stress rate 
tained from the tangent relation 

function spaces V, Sand are defined as follows: Vis the usual 
compatible (in particular continuous) displacements, whereas S '""'"',, ... ,,, ............... ...., 

square integrable stresses. As to we are guided by (9) to propose 
t' EE is constructed terms a compatible 

patible portion, defined as 
e' = e' c + i' , = u' EV 

where the enhanced portion ip E the structure 

e' = {~> + 2~(nv' + v'n) x E Qb 

tc xEQc=Q\Qb 

regular part i' c is assumed to be square integrable in V, whereas vec-
tors v' are square integrable along 

From the arguments in Simo and ( 1990), the function spaces S 
are chosen orthogonal in L 2(Q). ,.11....,.,_ll...,,..,, the stress field r E Scan 
nated between 1 ac ), cf. Larsson Runesson (1995), whereby 1) 
rephrased as 

e' c: a(e)dQ - W ext(u') = 0 

i' c: a(e )dQ + v' · · a(e))dI' = 0 

4 FINITE ELEMENT FORMULATION 

Enhanced CST-element 
region Q is discretized finite elements Q e, e = 1, 
a specific element, the displacement and the corresponding,....,.... .... ,.,.,.,,.,...,,'". 

ar~ interpolated by using standard compatible shape 
gives 

U = NePe 
In this paper, we restrict to piecewise linear approximation, ,....,.....,....,,.,,,,.,..,.,,,... 

to CST-element, for the displacement. Moreover, the stresses T 

the enhanced strain i E E are chosen as piecewise constant (within each 
such that 

NEL 

T = Lxere ' 
e=1 

NEL 

Ee= Lxetce , 
e=l 
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where Xe is defined as 

if! xEQe 

otherwise 

Fig. 2 Constant strain triangle with embedded discontinuity 

-

(17) 

Since Sand E are chosen orthogonal in L 2(Q), we obtain the "orthogonal-
ity" (or design) conditions that must be satisfied for each element 
e = 1, ... ,NEL 

A 
e + V

1 
en), lse = Le , Ae = m(Q e), Le = m(I'se) (18) 

se 

_, 
t ce = -

Upon inserting this expression into (14b ), while observing that u takes the 
constant values u c and u bin Q ce and in Q be' as indicated in Fig. 2, respective­

we obtain the simple relationship 

_ Ae (1 - Q_)(qc - qb) = 0 => qc = qb (19) 
lse lse 

where q = u · n. Hence, the traction is ensured to be continuous across the 
localization zone. In fact, traction is continuous across any surface in Q e 

with the normal n. 

4 .. 2 Finite Element Equations 
Upon invoking the result in (18) into (12) and (13), we may express any strain 

e E E(Qe) as 

{

t' be = Bep' e + (i- ,L)cev' e 
, - u tse Ee- . 

, -B , 1 C f t ce = eP e - -l eV e 
se 

x E Qbe 

(20) 
XE Qce = Q\Qbe 

where Cev' e is the matrix representation of the tensor (nv' e + v' en )/2 only 
shear strains are introduced instead of their tensor counterparts. 

Next, by inserting the preceding discretizations into (14ab), we arrive at 
the discretized formulation 
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re(pe, Ve) = 0 e = 1,2, ... ,NEL (21b) 

where the internal element forces he and re may be linearized to give the 
coupled system 

[db el = [ K~ Fe l [dpel (22) 

dre Fe dve 

In (22), we have introduced the matrices 

Ke =A,( 1 - z~JBfDa,Be +A, l~e BfD atfle (23) 

F, = -1,;( 1 - z~)BrDacCe -BfDabCe) (24) 

He= 1,; ( 1 - l~J[L Qac + (ct- L)Qab] (25) 

In (25), we have introduced the algorithmic acoustic matrix 
Q a = crn aC e' which is the matrix equivalent of the tensor Q a = n · D a · n. 

4.3 Analysis of Tension Bar 
The developed theory for the CST-element can be applied directly for the 
modeling of semi-brittle fracture of a uniaxially loaded tension bar, that is 
subjected to prescribed end displacement, as shown in 3. The stress­
strain relation is assumed to be bilinear with constant elastic modulus E and 
softening modulus The whole bar is analyzed as one single element with 
linear approximation of u in terms of the end displacement p e at the right end, 
while the left end is fixed, i.e. t: c is constant along the bar. The corresponding 
axial force (stress) is be (=a), and the tangent stiffness relation is obtained 
formally from (22) as 

(a) 

Fig. 3 

ocalization band 
of width o 

(b) R 

(a) Tension bar subjected to prescribed end displacement 
(b) Linear structural decay of tensile strength 
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pertinent expressions for Ke, and are given in (23), (24) 
(25). Moreover, assuming that elastic loading takes place within the 

..... .., ... ...., ..... ...,elastic loading occurs outside together Be = I/L, Ce = 1 

5 

we obtain quite straightforward manner 

Ke = i ( l Qb = : = ET 
1 -

MODELS BASED ON THE RANKINE CRITERION 

.,.,,..,.,,,..,.,.., .. ,.,. Criterion - Preliminaries 
the constitutive framework outlined above, we shall consider 

fracture criterion of Rankine for the modeling of semi-brittle 
concrete. The criterion is expressed the principal 

F=A + _1 -s (28) 
/\ 

at is the tensile strength, K is an "overstress" which is associated 
hardening variable u, whereas Sis the material parameter that governs 

evolution of damage. 
Subsequently, we identify two different special models from the u. ................ f'~'"" 

coupling described above: 
model is defined by purely plastic response, which is'-'....,, ............. ..., ..... 

...,.., ... ~ ......... "" S = oo , assuming H to be a fictitious parameter 
determined as part calibration process. 

second model is defined by choosing the simplest possible damage 
law assuming that virgin material is perfectly plastic, i.e. H = 0. 

case, it is the damage parameter Sthathas to determined as a part 
calibration. 

Calibration of Crack ............ "" ....... IJ 

models are calibrated mode I, with due consideration to the ..._...,,., .......... Jl 

ergy release within the band. It appears that, the softening 
model, this localization is, in fact, the one with respect to 
critical band orientation at uniaxial stress conditions for incipient 

damage-plasticity model, a slight rotation from the largest If-'" ............. If-'~ .. 
stress axis is obtained due to damage development. This rotation is, however, 
shown to be vanishingly when the band tends to zero, as 
cussed by Larsson and Runesson 995). Hence, it is sufficient to ...,~,"._.., ... , .............. 
~ ... ~ ..... ,~..., .. tensile test, where the localization mode prescribed to 

end, let us assume that the bar in Fig. 3 has been subjected to 
prescribed displacement p e = r, corresponding to the support 
be = such that the peak stress has been reached along the entire JI.,.., ...... ,.., ..... .. 

For simplicity, it is assumed that the post-peak response is ............. ,..._..ll 

softening with the structural modulus M < 0, i.e. R = Mr with = 
/\ 
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Softening plasticity model: 

= 

unique 
satisfies (30). Moreover, 

specimen or very large modulus, we conclude 
~ IMI. In case it follows trivially from (30) that we may 
=M. 

Damage-plasticity model: 

f\ 

Ke = in (27) yields 

So= -

case we set 
= - at s 

- ~( 1 -i)) 

This gives 

It appears, once again, that if ~ IMl, that the value of S and o 
obtained from the simple So = - at/M. 

Remark: the case that the deformation of the test ......... "",,.,. ...... ,..."" ..... 
... _._..,j;,JI....,..,, .. ...,....._ (or E/L ~ IMI), we the calibration that is 

crack concept of Hillerborg et al. ( 197 6). This means 
for the damage-plasticity model) is calibrated with respect to the 

fracture energy w1 within the crack band, which (due to the assumption 
softening) gives 

H=M=-o 
6 NUMERICAL EXAMPLE 

or 
w 

So = - at = 2_1_ 
M at 

MODE 

models have been in the finite element context, n:rha ... a 

numerical treatment is based on implicit method. We have 
50mm thick notched concrete specimen, as shown Fig. 4, 
shear deformations are prescribed simultaneously such 

Pt!Ps = 1 is kept constant throughoutthe analysis. The present ...,._,...,,..., ... JLA,JI...., .... 

also been tested experimentally by Nooru-Muhammed 992) with special 
attention to mixed mode fracture. 

the experiment, the plate was clamped to the test rig (adhesive..,. .. ~<·.-.,. 
glue), whereby displacements are prescribed as shown in Fig. 
properties of the (macroscopic) material are taken as E = 30GPa 
sion ratio v = 0. 20. The tensile yield stress of the virgin 

907 



= 3. the "fictitious crack calibration" was adopted to deter-
and So with w1 = for bi-linear decay of 

the tensile stress cohesive zone. 
to the the "plastic zone" constraint, cf. Larsson (1995), was 

to control the load increments such onset of fracture is monitored 
a successive fashion as the loading proceeds. Thereby, the 

orientation of the internal discontinuities are determined on the basis of the 
stress state that is present when onset of occurs. 

1 mm 
4 Geometry, loading and mesh of analyzed concrete plate 

qualitative behavior of the models are compared for a fixed mesh with 
508 elements (Fig. 4) when the band with is set to 2mm. The tensile as well as 

shear responses are given in Fig 5ab along with the corresponding 
experimental results. Note that a quite good agreement is obtained with the 
experiment. particular, the damage-plasticity model exhibits a slightly 
more flexible behavior than does the softening plasticity model; especially, in 

right the post-peak response. The reason is that the stiffness va-
nishes for damage-plasticity model when the material has become com-
pletely deteriorated, i.e. when a = 1 . 0. As to the tensile response curve, a 
discrepancy in the pre-peak behavior is obtained due to a different measure­
ment of the" overall" crack opening. Moreover, Figs. 7 ab shows the deforma-
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load-step for 

tern 

5 

(a) 

25 .......... ----

20 .......... ........... 

15+-+~~--

- d=0.5mm 
- - d = 1.0 mm 
_ .... - d = 2.0 mm 
-- Experiment 

10 .......................................... _ 

5.u-. .............. -.......a;~ .......... 

o ................................. ........., __ ......... ....,. __ 

the global U\J.LV.L.LJ..LUL.L'V.LJI. 

(b) 

KN -- d=0.5mm 
- - d = 1.0 mm 
- - - - d = 2. 0 mm 

20 ........................ _ ..... 

1S....._ ........... ...;..........._g111111.... __ ~-.............,. ......... .........,. 

l0.;,..... ......... .....,.11£;_...,~-----1-~....,a... ......... ....--1 

s ....... ~ .................. _..... ____ .,_ __ ................ ........., 
o ............. _.... ........... _..... ____ ._ ............... __ ........., 

80 100 0 20 40 60 80 100 60 

Pt µm Pt 
Fig. 6 Model sensitivity to the choice of band width: (a) reactive ten­

sile force versus tensile displacement, (b) reactive shear force 
versus shear (=tensile) displacement 

Finally, we have studied the sensitivity of the models with regard to 
choice of band width when the damage-plasticity model is considered. 
this end, we consider the choices o = 0 .. 5mm, Imm, and 2mm. From the 
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Fig. 7 

7 

same model behavior will be obtained 
behavior becomes "stiffer" for smaller o, 

"inter-elemenC approach adopted by 
of the model is clearly demonstrated 

impression is that the response 

...,. ..... '""·"'"''-''LL (with exaggerated displacement 
......... t-.-a.,..,. .. ,,, load step for damage 

Larsson and Runes son ( 1995), we 
.._,'U'JU . ..:UU.\,,;JLV'U two cohesive crack models in the Tr.r:ln-11C.•'ll:Tl"U"V 

band. Key ingredients of our analysis are: 
........ U • ....,'U' ...... ,, ............. ,.., ..... ..., approximation for capturing localization . 

..,JI. .......................... ,..., ..... where a discontinuous 
element internal variable v e· 

................................. were implemented for an enhanced 
classical localization condition is naturally 

chosen mixed finite element 
localization is possible, then the internal ......... ._,,....,...., ...... ,,... ... , ...... 

for the rate behavior, in terms of the ,...".,...,,,... ..... "''"' 
rate. Moreover, elastic unloading takes place, Ve == 0 

and the element the characteristics of the ordinary 
The models were successfully applied to the analysis of a notched concrete 

plate. The obtained from both models shows a good 
agreement 
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