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Abstract 
While the mechanics of fracture in three dimensional solids presents 
unanswered questions, this paper considers the parallel computational 
issues associated with a finite element analysis of non-planar crack 
representation and growth. 

1 Introduction 

Despite the advances in the mechanics of fracture in both two 
dimensional contexts, little work has focussed on the very 
computational difficulties associated with an analysis of non-planar 
growth. There are exceptions, of course, beginning with the nlr\"""·""n"n 

work of Ingraffea and coworkers (Sousa et al. (1991), Martha et 
(1992)) on the representation aspects within a boundary element approach 
(see Carter et al.(1995) for a recent account) and the elegant contribution 
of Xu & Ortiz(l 993) on non-planar growth, also within a 
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elements centred on the front. This standard mesh of 8 degenerate 
node Lagrangian brick elements (figure I), considered as a topological 

travels with the front as it propagates, and is distorted from a 
.-..o•-Te>, ... r cylinder by a set of transformation A regular mesh 
is thus easy to form. As an object, the tube to the external and 

faces form the to the polyhedron to be 

Crack tip elements 

Crack face tracking 
crack face mesh is unaltered through propagation phase, unless 

is interference an advancing adjacent crack or initiation 
face~ even then mesh is stored as a topological description 
crack. The crack representation therefore grows recursively as the 

crack propagates. algorithm for meshing the wake is ... .,..,.."'""''°"",.... 
recursively to generate face. 

When the crack advances, the surf ace between the trailing nodes 
fracture tube the two faces of the crack are separately meshed 

to ensure an triangulation; this is .,."''""'TIT• 

will not be altered. algorithm is a 
the the best triangles are 

minimizing the length of diagonals (figure 2). 
since we control the size of crack this can be related to the 

tube elements so that most cases, algorithm essentially 
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meshes between two rows of nodes on a distorted surface. 
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Figure 2: Crack face Delauney meshing 

3 Crack tip elements 

3.1 Form of singularity 
Banks-Sills ( 1991) shown that for a suite 20 quarter-point 
elements, the singularity along any ray from the varies 0( 11-Vr), but 
states that results the 27 node (not collpased) should be best 

side nodes to the 11/32 point. For collapsed 27 
Lagrangian element, we have found two forms of singularity that can 
captured: the 0(1/'1r) singularity required for linear elastic fracture 
mechanics, and also an 0(1/r) form suitable for ductile fracture, through 
an alternate compatibility on the degenerate faces. 

Firstly, when the degenerate face is collapsed, and 
nodes on opposite edges are mapped into single nodes one set 
displacements), it can be shown explicitly that the displacement from 
degenerate edge also varies like 0(1/-Vr), where r is the distance along a 
ray from the edge, at any angle within the element. However, for this to 

true, it has be found that the mid-side nodes must be placed at the 
quarter-points, contrast to the finding in Banks-Sills( 1991 ). 

nodes on the degenerate face are given the same coordinates, 
retain their identity, then the singularity is now 0( Both results 

can be shown explicitly by writing functions in a system 
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3: Inclined 

Applied Load 
10 MPa 

Cylinder Length : 1 OOmm 
Cylinder Diam : 1 OOmm 

Crack : 
Major Axis : 75mm 
Minor Axis : SOmm 
Inclination : 15 ° 

a cylinder 
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4 advance 

Crack advance and remeshing present three fundamental computational 
issues to be addressed: (i) crack criterion and a mechanism to allow 

(ii) mesh smoothing and interpolation on the front; and, (iii) 
···~·~·~·· mapping to a new mesh. Each these is disussed the 

following. 

Propagation control 
While there may be cases when cracks are essentially cohesive throughout 

paths, there are problems where cracks may initiate from a 
zone damage, but propagate as linear elastic cracks when viewed at the 

scale. One case in point is the chip forming process in rock 
..., ................. ,....,, where elastic cracks propagate rapidly from a zone of very high 
compression under the cutting tool. Hence, we now discuss modes of 
control within the LEFM formulation discretized on a finite element mesh, 

end the section with a discussion of the distributed to discrete 
representations. 

Gerstle et al. ( 1988) use a crack criterion for fatigue situations. A 
crack length advance arises from the use of a fatigue power law, 

for example, which relates maximum and minimum SIFs to the rate 
change of crack length with cycles (see e.g. Suresh (1991)). 

sub-critical growth, where crack propagation is quite stable, a 
variety of growth mechanisms could be adopted. We suggest a simple 
adaptive pointwise trial step: if the new SIFs exceed toughness, we allow 
a advance of the order of the trailing mesh (figure 2) at the point of 

largest K values. Other points on the front advance in proportion with 
stress intensities. is similar to the apporach of Xu & Ortiz 

( 1993) who pose the problem in terms of crack velocity, allowing the 
fastest point to move furthest. 

Choosing the direction of crack growth is also non-trivial. The 
principle hypothesis used Sousa et al. ( 1991) is that non-planar cracks 
advance in the direction given by the pointwise maximization of potential 
energy release rate along the crack front. This would seem the most 
rational criterion available, since it embodies the Irwin relationship 
between energy release rate and stress intensity. For the general case 

plane strain and anti-plane strain loading (i.e. non-planar): 
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2) (1 + v) K 2 
+ JII 

E 
(2) 

practice, stress intensity relations are used to define direction of 
growth. Difficulties can arise in cases crack and/or A~L~~AAA,.., 
(Baker & Grummitt (199 a check on circumferential stress is better. 

Furthermore, when we do not have a sub-critical or fatigue regime, care 
must be taken that the computational mechanism does not lead to spurious 
results. We outline two possible approaches. One can use a load 
parameter to control crack growth at constant toughness, using the 
step advance concept. Crack advance is of course a pointwise concept, 
and it is not clear what effect will using a constant length increment 

a single load parameter, since a may naturally grow at different 
rates along the front. Alternatively, one might consider the length of a 
fictitious crack at constant energy release. That is, evaluate damage and 
then let crack advance by the equivalent length of the fictitous crack; 
notwithstanding there are considerable difficulties in mapping. 

4.2 Front node interpolation 
order to avoid excessive distortion as the front grows, and potentially 

curves back on itself, the front nodes are reinterpolated at each advance. 
Once new nodal positions are calculated, an interpolation function is 
determined for that front location~ B-splines would appear to be reliable. 
New nodes are then placed uniformly along the interpolant, substituting 

old. Importantly, the process of generating the new and mapping 
information on the tube is left until front has been interpolated. 

4.3 Information mapping 
A signature of all remeshing schemes is the need to map information from 
the current mesh to the replacement discretization. Here we outline two 
generic approaches. 

4.3. l 'Putting' information 
Often schemes require that stress and strain data be mapped. The usual 
approach would be to store data for each Gauss point on the old mesh, 
remesh, then find where those points in the new mesh, and from the 
collection of such points in each new element, interpolate to the new 
Gauss stations. There are two problems: (i) the exercise in finding the 
local coordinates (in iso-parametric elements) the new mesh for given 
global values from the old is time consuming and non-trivial; (ii) once 
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~~AA·~~ have been located, process of interpolating is liable to error 
since is no a-priori gaurantee that the appropriate number of points 

located element on the new mesh to give a reasonable 
stress smoothing 

c 

5: Interpolation 

'Getting' information 

D 

- - - Original elements 

New mesh 

ABC: too few points 

ACD: too many points 

sampling points 

we begin with points on the new mesh bring the relevant data to 
stress data is we again store data against the old Gauss 

then remesh, then we locate new Gauss points on 
and find of the same 

these belong to one 
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Figure 6: Stress hyperplane Simplex 

coordinates, Li, 
to inside element j, we 

The displacement interpolation as 
discretized domain, Qi step i, consisting of an assembly 
coordinates, xie. writing a for assemblage 

the element shape functions, \I {.} for an assembly 
elements, mapping process 

= 

course, must be a " .......... ,t-.. ,..,. 
energy basis 

we require an equivalence 
before any 

smce boundary 
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we 

is required 
during 

growth, and a consequent 
we displacements in the 

.... .., ......... i:;;.. stress intensity factors. That being so, we 
displacement field on the fracture tube ........ U.JUUJ-. 

rav-.ar.~""'' to above, for completeness. Since SIFs are 
by relative mapping is not actually needed, we 

use a circumferential stress check for crack ~ ....... ..," ..... 'U' ..... 

crack face remains unaltered so no 
AAA~ ..... .., •• AA- of face displacements is required. 

Standard plasticity formulations assume that a plastic zone 
spreads over an element. They require the storage of stress 
information at the sampling stations, with numerical intergation 
element domains. However, under remeshing, these stations 
longer correspond to same locations 

940 



STAGE 1 

STAGE 2 

It must 
not 

be allowed on 
continuum ~~<&~~--

u ... ...., ................... ., had softened to a 

a 

object. 
a discrete 

value 1
• 

ref eased G f 

1 The basic idea was discussed at a meeting with G.Baker, A.R.Ingraffea, 
W. van J .Rots and at October 
1994. 
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to spread to tube boundary, and then drive the through 
partially softened zone at the appropriate energy release rate. energy 
dissipated could be found by integrating across the tube domain (akin to 
Mazars & Pijaudier-Cabot ( 1994) ). residual energy this ...... .._, ................. . 

the fracture energy, could be as crack closure forces, 
iteratively until energy is stiffness a 
cohesive element. 

The information mapped in the polyhedral zone vu•l..::>.n .. •~ 

consist then of elastic stresses The crack to tube 
boundaries according to propagation softening 
control on advance along the front. 

5 Concluding 

this article, we outlined the procedures and challenges a 
element based computational tool for the simulation of crack growth 
three-dimensional solids. contribution to lies 
development of a toplogical and robust A ......... ,...., .. u ..... 

domains. task now is to 
simulation of more complex 
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