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Abstract 
Fracture energy of concrete is usually considered to be a specific value 
characterizing ·a homogeneous material. In many cases, however, the 
dimension of the maximum aggregate is not sufficiently small with respect 
to the dimensions of a given element. In these cases the heterogeneity of 
the composite material has to be taken into consideration. Below a 
characteristic volume measured values of fracture energy are not 
representative for the bulk material. On the other end of the size spectrum 
unstable failure may occur. Criteria for unstable crack propagation are 
formulated. Theoretical predictions are compared with numerical results. 
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1 Introduction 

In history of fracture mechanics many models have been developed to 
predict fracture of brittle and ductile materials. The first model was 
formulated by Griffith in 1921. This model is based on the assumption that 
a material behaves linear elastic until a given crack starts to propagate. 
Therefore this model has become the basis of linear elastic fracture 
mechanics (LEFM). From continuum mechanics it can be shown that in 

79 



linear elastic structures exhibiting a sharp crack the stress in the material in 
front of the crack tip reaches infinity. However, every real material shows 
plastic deformations at strains high enough. For this reason there is always 
an inelastic zone in front of a crack tip, where the stress reaches a finite 
maximum value, which often is assumed to be the materials strength. This 
means that the Griffith theory is only applicable to describe crack 
propagation in materials with a very small inelastic deformation zone in 
front of the crack tip. Many researchers have tried to introduce refinements 
into the Griffith theory in order to take the inelastic deformation zones into 
consideration. For example the Dugdale model ( 1960) deals with an ideal 
plastic zone with a constant yielding stress in front of the real crack tip. 
Other models are the Barenblatt model (1962), which is based on similar 
assumptions as the Dugdale model but the distribution of the stresses in the 
plastic zone do not have to be known in advance. There exist also more 
simple models to generalize the validity of linear elastic fracture mechanics 
such as the effective crack model (ECM) or the approach based on the 
crack resistance curve (R-curve). However, all these models are only 
applicable if the plastic deformation zone in front of the crack tip is small 
compared to the initial crack length. 

A new model introduced by Hillerborg et al. (1976) is the fictitious 
crack model (FCM). This model is able to describe crack formation and 
propagation in a material without an initial crack. The size of the inelastic 
zone, this is in concrete science the so called fracture process zone (FPZ), 
does not have to be known in advance and it doesn't matter if it is of the 
same size as the ligament (Ba.Zant (1987)). This model is only applicable 
in finite element calculations and analytical solutions can only be found 
for the simplest case, i.e. the direct tension test run on unnotched 
specimens. 

Under simplifying assumptions a relation between some models from 
LEFM and the FCM may be derived. It is shown, that there is a relation 
between the FCM and the ECM combined with the R-curve modelling. If 
this relation is known, the size of the fracture process zone (FPZ) can be 
calculated from the parameters of the FCM and a stability criterion from 
R-curve modelling (see Gurney et al. (1967), Clausing (1969), Hutchinson 
et al. (1979) and Mai et al. (1982)) can be applied. 

2 Fundamentals 

Linear elastic fracture mechanics 
As mentioned above, LEFM is based on the assumption that the bulk 
material remains linear elastic until crack growth occurs. In 1957 Irwin has 
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shown that the stress distribution in the crack plane in front of the crack tip 
is given by the following equation: 

K1 
(jv= ~+ ... 

· -v2·n·r 
(I) 

The dots indicate higher order terms, which depend on the geometry of the 
structure. These terms can be neglected in the region near the crack tip 
because there the geometry independent singular first term is dominant. In 
eq. (I) K1 is the stress intensity factor (SIF), which describes the intensity 
of the stress singularity in front of the crack tip. 

The SIF depends on the acting external load F and the specimen 
geometry. It can be calculated in general by the following equation: 

K ' = f~1aX . r(ao' (2) 
IC t·-fii H) 

For geometrical similar specimens H is the characteristic specimen 
dimension, t the specimen thickness and Y(a/H) a coefficient which 
depends on the type of load, the shape of specimen and the initial crack 
length a0 • 

In LEFM a crack starts to propagate, when the SIF reaches a critical 
value. This value is assumed to be a material property. For ideally linear 
elastic materials the critical SIF K1c can be derived from the following 
equation: 

or in the more general case 

K1c =~E* ·Ge 

with: E* =E 

E* = E / (1- v 2
) 

for plane stress 

for plane strain 

(3) 

(4) 

Where y is the specific surface energy required to form one unit of area 
of a new surface, E the modulus of elasticity and v the Poisson's ratio. If 
we consider the energy dissipation absorbed in the bulk material 
surrounding the final crack, the surface energy y can be replaced by half the 
energy release rate Ge. The energy release rate Ge considers the formation 
of two new surfaces and additional energy dissipating terms. 

2.2 LEFM corrected for "effective" crack length, ECM 
A very simple model related to LEFM that takes plastic deformations in 
front of the crack tip into consideration is the LEFM corrected for an 
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effective crack length. It is assumed that the stress distribution in front of 
the crack tip reaches a finite value corresponding to the material strength ( 
and that no singularity takes place (see figure 1). 

cr 

r r 
a a 

Fig. 1. Stress distribution, FPZ and effective crack length 

A further assumption of this model is that the stress distribution in the 
linear elastic parts of the specimen is equal to the one considered in LEFM. 
For that reason the real crack length is replaced by a virtual "effective" 
crack length so that the stress distribution in the linear elastic bulk material 
remains the same. The "effective" crack length can be determined from the 
stress distribution in the crack plane. The crack tip of the effective crack is 
defined to be ahead of the real crack and located at the point, where the 
area A 1 added to the initially assumed stress distribution equals the area A2 

(see Fig.1). We should always keep in mind, that these assumptions are 
only allowed, when the plastic zone is comparatively small with respect to 
the initial crack length. 

2.3 Crack growth resistance curve, R-curve 
The R-curve describes the change of the resistance against cracking R with 
progressing crack formation. For most metallic materials the resistance R 
against crack growth increases with increasing crack length ~a. Therefore 
in testing metals the R-curve has widely been studied. It is assumed, that 
the shape of the R-curve is a material property independent of the size or 
geometry of the specimen. In material testing the R-curve is usually 
determined from the load deflection curve obtained from stable 
displacement controlled tests (ASTM (1988)). 

For concrete the R-curve approach is not generally applicable, because 
no well defined crack tip exists. 

In this paper a relation between the ECM, the R-curve and the FCM is 
established. In this way, it is possible to calculate the shape of the R-curve 
as a function of the effective crack length from the parameters of the FCM. 
With this model the maximum length of the FPZ can be calculated as a 
material parameter and it is possible to estimate the size of specimens, for 
which the R-curve is applicable. · 
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3 Relation between the FCM and the ECM 

In order to derive a relation between the FCM and the ECM some basic 
assumptions have to be made. While cementitious materials have a small 
capacity of deformation we can assume that the crack surfaces in the 
fictitious crack are linear. Hu ( 1989) has shown that this assumption is 
applicable for cement based materials. Then we can calculate the relation 
between the fictitious crack opening w and the distance from the fictitious 
crack tip x, as shown in figure 2 in the following way: 

w x 
or 

w 
(5) 

aFPZ,C X aFPZ,C We 

where aFrz.c is the length of the fracture process zone (FPZ) and w c the 
critical fictitious crack opening. 

a) 

a 

crack surfaces 
within the 
fictitious crack 

b) 

a 

w.w 

a 

3.rn:.c 

x 

crack surfaces 
within the 
fictitious crack 

O' cr(r)=~ 
"' '/ht 

r 

Fig. 2. Relation between the FCM and the ECM 

If we know the length of the FPZ we can directly calculate the stress 
distribution in the fictitious crack by applying the parameters of the FCM. 
To determine the actual size of the FPZ we have to consider two cases (see 
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Fig. 2). First, where the FPZ is fully developed (Fig. 2 b)). Here we can 
calculate the SIF by eq. (2) where Ge is replaced by Gr. Second, where the 
FPZ is not fully developed (Fig. 2 a)), here we have to replace in eq. (2) Ge 
by Gr*· Under the assumption, that in Fig. 2.b) the area A1 is equal to A2 we 
can calculate the maximum extension of the FPZ aFPz.e as follows: 
• The area A 1+A3 is given by: 

r=xk r=xk K 2 K 
A1 + A1 = f o-(r)dr = J ic dr =~-j;; 

- ~ ~ 
r=O r=O 

(6) 

• The value xk is shown in Fig. 2 and can be determined from the 
condition that for r = xk the stress is equal to the tensile strength(: 

K K 2 

(}(r = xk) = J, =} IC =Ii =} x = JC 
/2·ff·X 

1 
k 2-~·f, 2 

v k t 

(7) 

• Therefor the area A1+A3 is given by: 

K 2 E·G 
A1 + A = ______!!2_ = __ f 

3 J, ff·ft ff· t 
(8) 

• This area should be equal to the area A2+A
3 

that is given by: 
x=aFPZ.C 

A2 + A3 J (}(x) -dx (9) 
x=O 

cr(x) is correlated with the strain softening function cr(w) by eq. (5). 
With the assumption that eq. (8) is equal eq. (9) we can calculate the 
extension of the FPZ aFPz c In table 1 the equations for the maximum length 
of the FPZ for different s'train softening functions are given. 

As long as the FPZ is being formed K1 in eq. (2) is smaller than K1e and 
Gr* is smaller than Gr (see Fig. 2) we can calculate for every Gr* the actual 
length of the FPZ. By subtracting xk from aFPz we can calculate the 
effective crack length aew If we substitute the fracture toughness by 
KR= ~E · R(aeff) in the previous equations and solve for R(aeff) we can 

calculate the R-curve. 
In table 2 values of typical maximum lengths of the FPZ aFrze for 

different cementitious materials are given. These values have ·been 
calculated from data published in Trunk et al. (1998). 
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Table 1 Relations between the parameter of the FCM and ECM 

Dugdale / 1 for 0::::; w ~We E ·G.r _!ch 
Jr· J;2 ---;-

Linear 
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Table 2. Maximum len th of the FPZ 
Material HCP Mortar Concrete Dam concrete 
a_. [m] 0.1 3.4 14.5 14.2 

4 Validation 

To prove that the assumptions made in this contribution are correct, 
numerical calculations with the FE-programs DIANA and FRACTURE I 
using the FCM and calculations with the effective crack model using the 
equations from R-curve testing given in the ASTM standards (1988) have 
been carried out. In figure 3 the linear softening diagram used and the 
corresponding R-curve, derived from the given strain softening diagram as 
described above are given. As an example a CT specimen with a 
characteristic specimen height H = 200 and a value of a!H= 0.5 has been 
investigated. figure 3 the calculated load displacement curves are given. 

It can be seen that there is good agreement between these calculated 
results. The dots (data points) in the load deflection curves (Fig. 3c)) 
indicate different stress states for which the stress distribution ahead of the 
crack tip has been calculated. In fig 3 d) the stress distribution in the crack 
plane at the data points is shown as calculated by the finite element 
program DIANA and the ECM. For the ECM the linear elastic stress 
distributions have been calculated from equation (1) and higher terms, 
representing finite stresses are neglected. The sign "<" indicates for each 
stress state the position of the real crack tip. 
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Fig. 3. Comparison between the FCM and the ECM 
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As it has been shown, the parameters of the FCM can be converted to a 
curve. Now stability criteria as proposed by Clausing (1969) and Gurney et 
al. (1967) based on R-curves can be applied. Many authors have shown, 
that by using an infinitely stiff testing machine and for an increasing 
curve as it exists for concrete the CT-specimen similar specimens 
the DCB specimen will always have a stable crack growth 
displacement controlled conditions. But the point bending 
specimen shows for small values of a/H an unstable (snap-back) 
behaviour. For that reason the influence of a/H-value, 
characteristic specimen dimension Hand the fracture energy Gr by means 
of the FCM and ECM has been studied (see Fig. 4 and 5). It can be seen 
that the brittleness for decreasing a/H-values, decreasing fracture energy 
and increasing specimen size increases. In figures 4 and 5 results 
calculations are shown, which have been carried out on specimens 
show a critical, a snap-back and a stable behaviour. It can bee seen that the 
prediction of stability presented in this paper is useful, if the size of 
FPZ is comparatively small compared to the size of the element. 
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6 Conclusions 

The theoretical considerations presented in this paper show, that there is a 
simple relation between some models based on LEFM and the FCM. 

It has been shown, that the size of the fracture process zone reaches for 
very large structures a finite value, which is independent of the size of the 
element and geometry. For usual concrete structures the size of the FPZ is 
large compared to the structural dimensions. For this reason models 
derived from LEFM are not applicable. 

For large plain concrete structures such as dams, models based on 
LEFM can be applied, because the maximum size of the FPZ (=:15 m), is 
only 1/10 of the usual height of a concrete dam. 

For these large structures stability criteria as derived from R-curve 
modelling can be applied. 
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