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Abstract 
Fracture energy of pseudo strain-hardening cement1tlous composites is 
computed by means of finite element analysis of crack growth under small­
scale yielding conditions. A parametric study is conducted, which clarifies 
the relation between the composites' uniaxial behavior and· their fracture 
energy. 
Key words: short fiber composites, pseudo strain-hardening, R-curve, 
small-scale yielding, FEM analysis 

1 Introduction 

The possibility to control their overall mechanical properties by adjusting 
micromechanical parameters of their constituents is one of the most im­
portant features of composite materials. In this paper, we consider a class 
of composites consisting of a cementitious matrix and relatively low vol­
ume fraction ( <2%) of short randomly distributed and randomly oriented 
fibers. Using an analytical model that relates the composites' post­
cracking behavior to their microstructure, it has become possible to design 
composites that under uniform tension undergo extensive multiple cracking 
and have a significant overall hardening response (Fig. 1 ), (Li, 1997). 
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1 Typical uniaxial tensile 
behavior for a pseudo strain­
hardening composite 

Fig. 2 Cracking of a pseudo 
strain-hardening com­
posite in front of a notch 
(photo ACE-MRL) 

the multiple cracking state, the composite exhibits almost uniform 
distribution of sub-parallel matrix cracks with small crack spacing (several 
millimeters) and sub-millimeter crack widths(< mm). From a macro­
scopic point of view, the deformation due to these cracks can be seen as an 
inelastic strain, and the behavior is termed pseudo strain-hardening . 

............... .11.IJ.ll"" cracking is possible due to fibers transmitting increasing trac-
across the matrix cracks as the cracks The overall hardening 

behavior ends when fibers on one the crack planes cannot 
carry further and start to exhibit softening. Consequently, 

.. '"'..., .......... '"'"""" into a single plane. 
experiments by and Rashida (1992) have shown re-

markable behavior of these materials in the presence of a stress concentra-
such as a notch. Propagation of a traction-free crack the notch tip 

acc:onmamea by cracking distributed over a large volume, as 
as extension of a bridging zone localized main crack plane (see 

Such a behavior leads to energy dissipation both off and on the 
fracture which results in a significant increase the composite 

macroscopic crack propagation. This property opens a 
materials, ranging from strain-intensive 

.................. , . ..,. to penetration-proof structures. 
a necessity arises to design these composites for target 

... '"" ............ u ....... ,.., given not only in terms of their response to uniaxial tension, but 
also terms of crack growth resistance. To be able to this task, a 
link is needed that relates the behavior of the composites under uniform 
..... u.J ..... .,,. .... " .. tension -a that can be predicted using existing models -

fracture objective of this paper is to clarify the above 
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2 Characterization of crack growth resistance in pseudo strain­
hardening cementitious composites 

2.1 Fracture energy and R-curve 
The subject of the present study is a growth of a traction-free macroscopic 
crack (macrocrack) in a pseudo strain-hardening composite. Crack driving 
force in a nonlinear material can be expressed in terms of path-independent 
J integral (Broek, 1991 ), defined by Rice (1968) as: 

J = f(wdy- au 
r ax 

Here r is a contour connecting the macrocrack surfaces and completely 
surrounding the nonlinear zone at the macrocrack tip, W is the strain­
energy density, tis the traction vector, u is the displacement vector, and ds 
is an element of arc length along r. condition for the macrocrack 
growth is then 

J =J c' (2) 

where Jc is the macrocrack growth resistance. Using Eqn. 2, the resistance 
can be estimated as value of the J integral, calculated at the instant 
when crack extension occurs. 

As shown by Rice (1968), under 
the J integral can be interpreted as a .... .-J.u.u .. u:::."' 

crack growth conditions, 
potential energy for a virtual 

understood as energy that has 
traction-free macrocrack. We 

crack extension. resistance Jc can 
to be supplied to create a unit area of 
call Jc a composite fracture energy. 

The supplied energy is consumed two inelastic processes around the 
macrocrack 

• distributed cracking, where 
mation of new cracks and 
bers bridging these cracks; 

• degradation of fiber bridging 
energy is released mainly through 

dissipative mechanism is for­
.1..UU!L.l..l.Li>. interface debonding of fi-

localized process zone, where 
pullout. 

Accordingly, Hashida (1992) .;,ui:::.1::.'-··:"·"'·u that the composite fracture 
energy Jc could be decomposed two components: off-crack-plane 
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fracture energy J m and bridging fracture energy J b· The first component 
corresponds to the energy released through multiple cracking, while the 
latter one to the energy dissipated in the localized bridging zone on the 
main fracture plane. Bridging fracture energy Jb can be evaluated as J inte­
gral taken on a contour enclosing only the localized bridging zone. The 
off-crack-plane fracture energy J m is then the difference between Jc and lb. 

During the traction-free macrocrack growth, the extent of the near-tip 
nonlinear process zone changes. Consequently, the macrocrack growth re­
sistance is not constant, but varies with the amount of crack extension. 
This behavior is characterized by the R-curve; a plot of the fracture energy 
(or resistance) Jc against the crack extension length ~a. 

2.2 Characterization under small-scale yielding conditions 
Under small-scale yielding conditions, it is assumed that the nonlinear 

zone at the macrocrack tip is very small compared to the crack length and 
that it is embedded in a stress field, which is dominated by the singularity 
of elastic solution (Hutchinson, 1968). Considering mode I crack, the sin­
gular stress field, also called the K-field, is given in the form of: 

(3) 

where r and 0 are polar coordinates with origin at the traction-free crack 
tip, f;/0) is a function of angular coordinate 0 only (see e.g. Broek, 1991), 
and K is the mode I stress intensity factor. Under these circumstances, the 
J integral, taken on a contour connecting the macrocrack surfaces and 
passing outside of the near-tip nonlinear zone, coincides with the· energy 
release rate G. Furthermore, the G is related to the stress intensity factor 
K: 

Kz 
G=­

E'' (4) 

where E' is the Young's modulus E for plane stress and E' = E /(1-v 2
) for 

plane strain, and v is the Poisson's ratio. 
Consequently, the crack growth criterion given by Eqn. 2 can be re­

stated as: 

(5), (6) 
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where G c is a composite critical energy release rate. Kc is a composite 
fracture toughness. Note that, under small-scale yielding conditions, the 
composite fracture energy Jc and the composite critical energy release rate 
Ge are identical. In analogy to Jc, Ge can be also decomposed into two 
components Gm and G b' which correspond to the energy release rate in the 
multiple cracking zone and to that on the main crack plane, respectively. 

3 Material model 

constitutive model, which captures the cracking behavior of pseudo 
strain-hardening composites under uniaxial tension (see Section 1) and ex­
trapolates it into a two-dimensional plane stress/plane strain state, has been 
proposed by Kabele and Horii (1997). We employ this model in the pres­
ent study. The material in the hardening, multiple cracking state is repre­
sented using incremental theory of plasticity, with the Rankine yield func­
tion: 

and a linear kinematic hardening rule: 

(8), (9) 

Here ££/ is an inelastic cracking strain, associated with the width and spac­
ing of the multiple cracks. The parameter h is the slope of a uniaxial stress 
vs. cracking strain curve and is assumed constant. The parameter cr1c is a 
first crack strength under uniaxial tension. 

It is assumed that a change into a softening regime, and consequently 
fracture localization, occurs when the maximum principal value of the ac­
cumulated cracking strain attains critical level Embc· As shown in Fig. 1, 
this critical value corresponds to the inelastic strain at peak stress crmb of 
the uniaxial test. Upon satisfaction of the localization criterion in any ele­
ment, a discrete discontinuity is embedded into this element in a direction 
normal to that of the maximum principal cracking strain. The discontinuity 
surfaces are not immediately traction free, but the normal traction tn de­
creases with increasing normal displacement jump across the discontinuity 
on. The slope of this relationship (tension-softening relationship approxi­
mated as linear) is denoted as s. While tensile bridging traction exists, the 
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discontinuity corresponds to the localized bridging zone, discussed in Sec­
tion 1. Once the normal traction reaches zero value at 8n=80 , the disconti­
nuity becomes a traction-free macrocrack. 

summarize, the material model is defined by the following set of pa-
rameters: 

• Young's modulus E and Poisson's ratio v in the elastic regime; 
• first crack strength a 1c, tensile strength amb' critical cracking strain Emb c 

and hardening slope h = (a mb - (J Jc)/ f,~b in the hardening multiple 

cracking regime; 
• tensile strength amb' critical crack opening displacement 80, and tension­

softening slope s = amb/80 in the softening localized cracking regime. 

The meaning of each parameter is clear from Fig. 1. Note that, excluding E 
and v, only four of the parameters are independent. 

It should be also noted that due to employing the tension-softening rela­
tionship in the present model, no stress singularity occurs at either the lo-
calized bridging zone or the traction-free macrocrack tip. 

4 Analysis 

Kabele (1995) carried out FE simulations of crack growth under large scale 
yielding conditions double cantilever beam specimens made of pseudo 
strain-hardening composites. The analyses revealed that the specimen 
boundaries limited free expansion of the off-crack-plane nonlinear zone 
around notch As a large portion of total fracture energy (its 

this nonlinear process, a strong dependence of 
on a specimen size was observed. 

aim of the study is to find the resistance curve as a material 
characteristic, that is, independent of the specimen size. Therefore, we 
obtain the R-curves from analyses of mode I crack growth under small­
scale yielding conditions, which are achieved by embedding the damage 

crack bridging zones in a remote K-field. 

model and solution procedure 
analyses are out assuming infinitesimal strains and displace-

ments and stress state. 
The assumptions of small-scale yielding stated in Section 2.2 are real­

the following way. Taking into account symmetry of the problem, a 
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semi-circular domain with diameter D is considered. The domain is inter­
sected by a notch with length D/2, as shown in Fig. 3. Diameter D is 1000 
m, which is at least 500-times larger than the height of the largest nonlinear 
zone in any of the analyzed problems. Traction-free boundary conditions 
are applied at the notch surface and displacement in y-direction is fixed on 
the remaining portion of the symmetry axis. Tractions F, corresponding to 
the singular elastic stress field (Eqn. 3) with coordinate r measured from 
the traction-free macrocrack tip, are applied on the outer semicircular 
boundary of the domain. 

From Eqn. 3 it is clear that load F is a function of intensity K of the ap­
plied field. When the traction-free macrocrack propagates, Falso depends 
on the total crack elongation !ia, as the K-field is to be applied around the 
traction-free crack tip. Thus: 

F = F(K,!ia) (10) 

The R-curve is then traced using the following incremental procedure: 

1. Initially, the traction-free macrocrack tip coincides with the notch tip, 
thus lia=O. Load Fis incrementally changed by increasing the intensity 
K from zero, while Ii.a is kept constant. This results in multiple crack­
ing around the notch tip, modeled as continuum hardening plasticity. 
Further increase of K leads to formation of a localized bridging zone, 
where tension-softening takes place. This is realized by automatically 
changing the continuous elements into elements with embedded discon­
tinuity. K is increased until the crack opening displacement in the cen­
ter of the most strained element just ahead of the notch reaches the 
critical value of 80, at which all the bridging traction is released. This 
corresponds to a growth of the traction-free crack by the length of a 
single element, da. From Eqn. 6 it is obvious that at this instant, the 
crack driving force K is equal to the resistance Kc(lia=O). Thus, we 
obtained a point of the R-curve. 

2. As the traction-free macrocrack extension !ia is now equal to da, the 
applied load F(K=Kc(O),lia=O) has to be updated to reflect the new 
state. This is done by keeping K constant and adding an increment of F 
such, that the total applied load becomes F(K=Kc(O),Aa=da). It is as­
sumed that during this increment no further traction-free crack growth 
takes place beyond the element that has become critical in step 1. 

3. The steps 1. and 2. are repeated with the only difference that variable 
!.!a is initially assigned value !ia(previous step )+da and is incremen­
tally changed not from zero, but from Kc(previous step). 
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Fig. 4 Computed R-curve 

The procedure described above allows tracing the R-curve up to quite a 
large macrocrack extension, as the origin of the applied K-field is always 
kept at the actual traction-free crack tip. It should be also noted that, due 
to the assumption of no further macrocrack growth in step 2., the procedure 
is applicable only until the resistance increases or is invariant with in­
creasing !ia. 

4.2 Analysis of macrocrack propagation 
A material that will be used as a reference for further analyses is specified 
by the following parameters: E=22 GPa, v=0.2, a1c=2.4 MPa, amb=2.6 
MPa, Embc=0.001 and 80=1.27 mm. These parameters are realistic for a 
cement paste/polymeric fibers composite, even though the ductility (Embc 
and 80) may be on the lower end of an achievable range (Li, 1997). 

Fig. 4 shows the resistance curve computed for this material. Compos­
ite fracture energy Ge is calculated using Eqn. 4 directly from the applied 
stress intensity K when crack growth occurs. The figure also shows com­
ponent G b' calculated as J integral along the localized bridging zone. As 
derived by Rice (1968), Gb can be expressed as: 

8 

G b = f f n ( 8 n )d8 n , (11) 
0 

where 8 is the normal displacement jump at the end of the localized bridg­
ing zone. When macrocrack growth occurs, 8=80 and Eqn. 11 yields (for a 
linear tension softening relationship): 

(12) 
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Fig. 6 Zones of 'active' multiple 
cracking at different 
amounts of macrocrack ex­
tension 

Obviously, Gb is independent of the macrocrack extension !ia. Note that 
off-crack-plane fracture energy Gm is the difference between Ge and Gb. 

Fig. 4 reveals that at the macrocrack growth initiation, both components 
of fracture energy Gm and Gb have non-zero values. This results from the 
fact that energy is dissipated through both distributed multiple cracking and 
formation of localized bridging zone prior to the traction-free macrocrack 
growth. As the macrocrack extends, the total fracture energy increases, 
due to the increase in component Gm' until it reaches almost constant value 
at !ia equal to about 5m. This behavior can be explained analyzing Fig. 5 
and Fig. 6. Fig. 5 shows that the localized bridging zone profile and length 
are almost constant ever since the macrocrack starts to grow. On the con­
trary, the size and shape of an 'active' multiple cracking zone changes until 
the steady state is reached, as it is evident in Fig. 6. Here by 'active' zone 
we understand a region, in which energy dissipation associated with multi­
ple cracking takes place, or in other words, yield condition of Eqn. 7 is 
satisfied. 

Fig. 4 also displays values of J integral calculated using Eqn. 1 on a 
contour entirely enclosing the nonlinear zone. A good agreement with en­
ergy release rate G is observed, proving that small-scale yielding has been 
achieved. The difference between J and G at large !ia can be explained by 
accumulated error of the incremental finite element solution. 

4.3 Parametric study 
In order to identify uniaxial parameters that have a dominant influence on 
the composite fracture energy a parametric study was carried out. Individ­
ual effect of each of the following parameters was investigated: first crack 
strength cr1c [Case a], stress increase capacity after first crack (crmb-crfc) 
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[Case b], strain capacity £mbc with hardening slope (amb-crfc)/£mbc constant 
[Case c], £mbc with (amb-crfc) constant [Cased], and slope of tension soften­
ing relation s [Case e ]. An FEM analysis similar to that discussed in Sec­
tion 4.2 was carried out for at least three different values of each of the 
varied parameters, while keeping the remaining parameters constant and 
equal to those given in Section 4.2. Each computation was continued with 
increasing ~a until the fracture energy became invariant, or almost invari­
ant, of !J.a, providing both the composite fracture energy at macrocrack 
growth initiation and that in the steady state. Results of these analyses are 
presented in Fig. 7. The figure contains graphs of bridging fracture energy 
Gb, off-crack-plane fracture energy Gm at macrocrack growth initiation, and 
the steady-state value of Gm plotted against each of the varied parameters. 
The fracture energies are normalized by the bridging fracture energy of the 
reference composite from Section 4.2, which is 1.651 kJ/m2

• Each varied 
parameter is normalized with respect to its reference value given to it in 
Section 4.2. 

As the dependence of the bridging fracture energy on the uniaxial pa­
rameters is clear from Eqn. 12, we concentrate our attention on the off­
crack-plane component Gm. 

As seen in Fig. 7, the value of Gm at initiation of the macrocrack growth 
appears to increase almost linearly with any of the studied parameters, ex­
cept for the slope of tension softening relationship s [Case e ]. In the latter 
case, increasing s causes reduction in Gm· 

Analyzing Fig. 7, it can be noticed that increasing the first crack 
strength [Case a] has almost no effect on Gm in the steady state; actually, 
Gm slightly decreases with increasing ate· The off-crack-plane fracture en­
ergy exhibits initially almost linear dependence on post-crack stress in-
crease capacity (amb-afc) [Case b]. However, at higher values of (amb-afc), 
the relationship seems to flatten out. It is possible, though, that for the last 
point of the curve in Fig. 7.b), a steady state was not yet reached. The ef­
fect of parameter £mbc when (crmb-cr1c) is constant [Cased] also appears to be 
linear. Analyzing Fig. 7c), it is becomes clear that the most effective way 
to improve the steady-state value of Gm is to increase the strain capacity, 
while keeping the hardening slope (amb-crfc)/Embc constant [Case c]. In this 
case, the growth of Gm appears to be almost quadratic. Note that to keep 
(amb-crfc)/Embc constant, both Embc and (amb-afc) must increase proportionally. 
Thus, we can conclude that the effects of £mbc and (amb-crfc) multiply. 
nally, Fig. 7 e) shows that higher value of the tension-softening slope, which 
corresponds to a higher post-peak brittleness, results in decrease of Gm 
[Case e]. 

496 



4 10 

a) 
I 
I 

" 3 
I 

- - - -1- - -.,, 
~ 

2 
I 

"i - - - -1- -

E .. 
0 z 

0 

_bJ __ - I 

8 
I 

" 
-1-,, 

G> 6 .!::! 
"i 

4 E a.. 
0 

~--z 2 

0 

0.0 0.5 1.0 1.5 2.0 2.5 0 5 10 15 

Normalized Gtc Normalized (Omt>-<'1tc) 

6 3.0 
I 

" 
5 -c}----~ 

I 

_d)_ _ - -
I I 

2.5 I - -

" 
-------1--

1 4 -------+-

"i 3 
1 2.0 

"ii 1.5 
E 

2 .. 
0 z 

0 

E 
1.0 .. 

I 0 

~ 
z 

0.5 

0.0 

--- ---

0 2 3 0 2 3 

Normalized Emb 
c 

Normalized Emb c 

5 

" 4 ~L - - - - - -1- - -
OGb; A Gm (init. ); ¢Gm (steady) 

,, 
G> 3 - - - - - -1- - -

.!::! Varied Const . 
"i 

2 E a.. 
a) crfc ( (jmb-c;fc), f,mbc, S 

0 z ---~ 
0 

I I 

0 0.4 0.8 1.2 

b) ( <:rmb-<:rfc) (jfc• f,mbc• S 

c) embc crfc• ( (jmb-crfc)lemb• s 
d) embc (jfc• ( (jmb-(jfc), S 

Normalized s 
e) s (jfc• ( (jmb-crfc), emb 

Fig. 7 Results of parametric study 

5 Final remarks 

Attention has been paid mainly to the off-crack-plane fracture energy, 
as the dissipation mechanism that it associated with (distributed fine 
cracking) may be more desirable than the localized process that gives rise 
to the bridging fracture energy. However, it should not be forgotten that 
the bridging fracture energy may also significantly contribute to the com­
posite fracture energy. 
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Finally, applicability of the presented results should be discussed. 
The present analyses have been carried out under small-scale yielding con-
ditions. such a case, the nonlinear process zone where energy dissipa-
tion place is not limited by the boundaries of the structure or speci-
men. It be noticed that the nonlinear zone diameter was about 2 m 
for the reference composite in Section 4.2. Such a large zone may not be 
achievable real applications. Thus, the composite fracture energy actu­
ally observed in finite size structures may be much lower than the results 
presented this paper. However, these results are intended as guidance 
for a design of pseudo strain-hardening cementitious composites, which 
would have improved resistance against crack growth. For this purpose, 
the present work should prove itself useful. 

6 
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