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Abstract 

the present paper the possibility of obtaining information 
crack opening relationship for PRC-materials from standard 

tests is reviewed. A simple bi-linear modeling of 
opening relationships is carried out. This stress-crack __,,_,,.., ... , .... U.<;.. 

is implemented in a non-linear hinge model for a 
specimen and a parametric study is carried out. In the '-"'"''"·'-'-'-'-'~'-'-'-'--'-
....... --.i~~~ ... ,~ •• ~ for testing and interpretation test data for 
given. 
Keywords: Fiber reinforced concrete,"''"''"-'-'-'-'"' strength, stress-crack opening 
relationship, test method. 

1 

Traditionally, fiber reinforced concrete is characterized using three 
or four tests based on such as ACI ASTM C 

8, or Japanese JSCE-SF 4. 
these tests is based on the so-caHed toughness 

studies different fiber types and fiber contents. Hnirt"harrnn.•·0 

semi-empirical design methods are based on results 
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toughness index calculation. 
Recently, however, constitutive models have been proposed for FRC­

materials, (Casanova and Rossi 1997, Li, Stang and Krenchel 1993). Fur­
thermore, these models have been applied in different structural models for 
beams, pipes and slabs on grade. These constitutive models - based on the 
stress-crack opening relationship of the fictitious crack model (FCM) orig­
inally suggested by Hillerborg (Hillerborg, Modeer and Petersson 1976) -
calls for much more detailed information than the information that can read­
ily be obtained from toughness testing or even traditional fracture mechan­
ical interpretation of bending tests with notched specimens like the RILEM 
test method for determination of fracture energy. 

In plain concrete the stress-crack opening relationship CTw( w) - where 
w is crack opening and crw is the bridging stress - is often characterized in 
terms of the area under the curve, known as the fracture energy, G F: 

GF = 1o= crw(w)dw (1) 

together with a standard approximation of the true stress-crack opening 
curve. Note, furthermore, that the shape of the stress-crack opening curve 
(i.e. the stress-crack opening curve normalized with respect to the tensile 
strength) is fairly independent of the concrete type in question (Hordijk 
1991, Stang and Aarre 1992). 

Fiber Reinforced Concrete (FRC) has been developed with the specific 
aim of increasing the fracture energy of concrete rather than to increase 
stiffness and strength which is the typical situation in other fiber reinforced 
composite materials. This means that the same fracture mechanical frame­
work known from conventional concrete can be used in PRC-materials as 
well. On the other hand, the shape of the stress-crack opening curve is 
complex and greatly influenced by the type and amount of fibers used (the 
pull-out of fibers being the primary mechanism behind the stress transfer). 
Furthermore, the shape is essential for understanding the mechanical be­
haviour of the material. Finally, the fibers are still carrying load across the 
crack even for very large crack openings which are usually not relevant in 
structural design situations. In the light of these observations it follows that 
the fracture energy GF as defined above is not a very useful tool in the char­
acterization of material toughness and that the stress-crack opening curve 
itself has to be referred to and used in design situations. 

The necessary information can be obtained by the direct tension test with 
fixed boundaries. However, this test method is tedious, expensive and re­
quires closed loop testing facilities - thus it cannot be expected to become 
a standard test method in connection with design recommandations. There­
fore, recently, efforts have been made to investigate the possibilities of ex­
tracting information on the stress-crack opening relation from bending tests, 
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(Nanakom and Horii 1996, Kitsutaka 1997). It is the aim of the present pa­
per to investigate the possibilities of solving this inverse problem and based 
on the finding of this investigation to discuss possible design related testing 
strategies for FRC. 

2 The stress-crack opening relationship 

The basic test to determine the stress-crack opening relationship for FRC 
materials is the uniaxial tensile tests using notched specimens under defor­
mation control. 

cr[MPa] cr [MP a] 

Bi-linear fit 

Experimental results 

0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3 

crack opening [mm] crack opening [mm] 

(a) (b) 

Fig. 1. Typical stress-crack opening relationship obtained from experi­
mental measurements on steel fiber reinforced concrete containing 
l vol.% of hooked end steel fibers. In (a) is shown a bi-linear fit to 
the experimental results. In (b) is shown a theoretical modeling of 
the relationship showing the concrete and the fiber contributions. 

Some discussion is currently taking place regarding whether the defor­
mation-controlled uniaxial tensile test is the most suitable way to determine 
experimentally the fracture parameters of concrete and FRC, and if a uniax­
ial tensile test is performed how should it be designed? 

Recently Stang and Bendixen (1998) made an investigation on the re­
quirements for accurate determination of fracture mechanical parameters of 
FRC. It was concluded that, with sufficient rotational stiffness of the testing 
machine, sufficient alignment and suitable specimen size reliable measure-
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ments of the shape of the stress-crack opening relationship can be carried 
out. Furthermore, it was shown that these requirements can be fulfilled in 
a standard testing machine using a realistic specimen size. In Fig. 1 (a) a 
typical measured stress-crack opening relationship is shown for steel fiber 
reinforced concrete. Together with the experimentally obtained curves is 
shown a bi-linear fit. Furthermore, in Fig. 1 (b) a modeling of the stress­
crack opening relationship according to Li et al. (1993) is shown. From 
this modeling it is clear that the first part of the bi-linear relationship re­
flects a combination of the concrete contribution (strength and toughness) 
and the initial fiber bridging action, while the second part only reflects the 
fiber bridging action. 

3 Model for the Beam Test 

order to model a three-point bending test with a FRC material suitable for 
parametric investigations an analytical model is setup based on the concept 
of a non-linear hinge where the crack is modeled in a smeared approach. 

The concept of the non-linear hinge is illustrated in Fig. 2. This concept 
of a non-linear hinge has previously been suggested by Ultkjaer, Krenk and 
Brincker (1995) and Casanova and Rossi (1997). The hinge is modeled as 
incremental layers of springs which act without transferring shear between 
each oth~r. The vertical boundaries of the hinge are assumed to remain 
straight during deformation and the angular deformation is denoted 2cp. The 
associated longitudinal deformation of the springs is denoted u(y) where y 
is a vertical co-ordinate. The mean curvature of the hinge is denoted K* and 

mean longitudinal strain is denoted c:* (y), and they are given by 

K* =2~ 
' s 

c:*(y) = K*(y- Yo)= u(y) 
s 

(2) 

where Yo is the co-ordinate of the neutral layer in the hinge. It is assumed 
that the hinge layers behave linear elastically as long as the tensile strength 
ft is not reached. Young's modulus is denoted E. When the stress reaches ft 
a fictitious crack is assumed to form with a stress-crack opening relationship 
O'w which is a function of the crack opening w which in tum is a function of 
y. deformation u of a layer may then be obtained from 

u(y) = a~y) s+w(y) (3) 

Combining Eqn. (2) and Eqn. (3) we may extract an expression for O'w(Y) : 

E 
O'w(Y) = [2(y-yo)cp-w(y)]-

s 
(4) 
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.· 

s+u 

2. Three point bending non-linear hinge modeling 
propagation of a crack at mid-section. Below the 
lustration of an ... H.., .......... u, ... .., ................ horizontal layer the hinge. 
right: geometry of hinge ..... ...,,_..., .............. .__._._,,.,_. 

now assume 

O"w 
-=b·-a·w ft l l ' 

O"w may 

wo=O 

Solving Eqn. 4 and Eqn. 5 with respect to w and O"w yields the 
expressions for the crack opening and stress distributions in the .., ......... ...,.,, .. ~ ........ 

of the hinge. 

2(y-yo)<p- Si 
1- ~i 

Si - 2(y- Yo)<p~t E 
crw(Y) = 1 - J3i s 

It be noted within each of the multi-linear 
the crack opening w(y) as well as stress distribution crw(Y) are 

y. the uncracked part we 
y*): 

K* = _f_ =* y* = sft 
y*E 2<pE 

Now the complete stress distribution in the hinge is established 
Yo and <p. Balancing the sectional stresses with the external r.,.. ... .,.,,,...,,, 
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N and bending moment M yields a relationship between M, N and <p. Here 
we shall restrict ourselves to the case of zero normal force. Furthermore, we 
shall simplify the stress-crack opening function O'w to be a bi-linear function 
where b1 = 1, cf. Fig. 3. 

0 I II III 

1 

Stress distribution phases 

Fig. 3. Definition of a bi-linear stress-crack opening relationship and the 
four different phases of stress distribution during crack propaga­
tion. 

The different phases of stress distribution shown in the figure are gov­
erned by the parameters Y1 and Y2 given by the general expression 

1 
Yi= Yo+ 2<p [si-wi(~i - l)] 

where i is either 1 or 2. The following normalizations are made: 

6 
µ ---M 

- fth2t ' 
hE 

0= ~<p, 
SJt 

d 
a=-

h 

(9) 

(10) 

where dis the total depth of the crack, cf. Fig. 3. Given these normaliza­
tions the pre-crack elastic behaviour of the hinge is described by the relation 
µ = 0 with 0 :::; e ::; 1. In the figure below the complete solution covering 
all the cracked phases is given. The non-linear hinge is incorporated into 
the midsection of the three-point bending beam. The elastic deformation 
of the entire beam may be given by the Bernoulli beam theory (for short 
beams the Timoshenko beam theory should be applied and the effect of the 
concentrated load taken into account). The elastic deflection at mid-span 0e 
may be written as follows in the non-dimensional form: 

L ee = -µ (11) 
3s 

This deformation includes the elastic deformation of the hinge, thus the 
total deformation et is obtained by adding the elastic beam deformation 0e 
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and the hinge deformation e and subtracting the elastic part of the hinge 
deformation µ: 

B, = Be +e - µ Be + ( ~ - 1) µ (12) 

This expression, together with the relevant expressions for the normalized 
moment µ from Fig. 4, establishes the load deflection curve of the beam. 

Phase a J1 

I 1-{3, -J(l-{3,l(i-{3,) 4( 1 - 3a + 3a2 
_ _ci'_ )e-3 + 6a 

l-/31 
1-b 4(1-3a + 3a2 

_ __!!'__ )e-3 +6a-l-/31 - 20 2 -

1- /32 
II 

' ( (1-b,)2 

{3, + ~ J (l-b2{3a2 -(;e)') ll- /32) 482(/31 - /32) 

1- /32 

1 ( 
1
(1-b,)

2 hi J 4( 1- 3a + 3a2 - a 3 )e - 3 + 6a - 3a2 + 
1-- 1+ +-

28 ' /31 - /32 /32 1 ( h, )( b2 )( {31c ) 
III 

- 2 1-- 1--+c 1+-- + 
48 /32 /32 1- /31 

(;e)' 

Fig. 4. Complete solution for a andµ in the three phases I, II and III. Note 
that the solution for phase I is equivalent to similar expressions in 
(Ulfkjaer et al. 1995). 
Above c is given by c = (l-b2)(l- ~1)/(~2- ~t) 

The magnitude of the hinge widths has previously been assessed (Ultkjaer 
et al. 1995, Pedersen 1996) and for pure as well as fiber reinforced concrete 
it has been shown thats= h/2 is an adequate choice. 

It has been verified by comparison with non-linear FEM calculations 
with various bi-linear stress-crack opening curves that the non-linear hinge 
method withs= h/2 gives very accurate results for the whole load deflec­
tion curve in a three-point bending test setup with notched or un-notched 
beams. Furthermore, it was shown by Pedersen (1996) that the non-linear 
hinge method - in a slightly simplified version - produces quite accurate 
results for the load carrying capacity of FRC pipes. 
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4 Parametric Study 

In the following a parametric study is carried out with the aim of investigat­
ing to what extend variations in the stress-crack opening relationship cause 
unique changes in the load-deflection diagram from a three-point bending 
test. 

In the present investigation load-deflection diagrams are calculated with 
the non-linear hinge model for a 100 mm xlOO mm x800 mm beam without 
notches. Similar curves are obtained in the case of notched beams when the 
presence of the notch is modeled by introducing an effective beam depth. 

z 
=-'"O 
al 
0 _, 

0.0 

E = 30 GPa, ft= 4 MPa 
a2 = 0.05/mm, b2 = 0.45 

a1=20 

a1 = 40 

a1=60 

a1 = 80 

a1 = 100 

0.2 0.4 0.6 0.8 
Deflection [mm] 

(a) 

1.0 0.0 

E=30GPa, ltla1=0.2mmMPa 
ft'a2=0.2MPa/mm, ft*b2=1.8MPa 

-- ft=4MPa 

It= 3.5 MPa 

!t=3MPa 

ft= 2.5 MPa 

ft= 2.0 MPa 

0.2 0.4 0.6 0.8 
Deflection [mm] 

(b) 

1.0 

Fig. 5. Parameter variations corresponding to changes in the concrete 
composition: (a) ai and (b) ft. 

In Fig. 5 parameter variations are shown corresponding to changes in (b) 
tensile strength of the concrete, ft (keeping ft/ a1 constant approximating 
a situation where the fracture energy of the concrete is kept constant) and 
(a) concrete toughness and/or initial fiber bridging effect, a1. Variation in 
tensile strength ~auses the crack initiation point to change. Furthermore, 
the initial part of the curve is changed. The same kind of change in curve 
shape is observed from a change in a 1. This change is not accompanied 
by any change in crack initiation point. However, since the crack initiation 
point can beady be distinguished changes in ft is very easily confused with 
changes in a 1• On the other hand, changes in the second part of the bi-linear 
stress-crack opening relationship can easily be distinguished from changes 
in the first part, as can be seen,from a comparison between Figs. 5 and 6. 
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6. Parameter variation corresponding to changes 
a2 

5 

is also needed, bending tests are not ., ...... , ....... ..., .... ....,AAll. 

property e.g. 
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