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Abstract 
In this paper the finite element method is used to study non-prescribed 
crack propagation in concrete. Based on Hillerborg' s discrete approach, 
cracks are allowed to evolve along interfaces or joints, with initial zero 
thickness. These interfaces are located along interelement boundaries of the 
finite element mesh which is kept unchanged during the analysis. Cracks 
open according to mode I fracture. Two different models are used for crack 
evolution: i) in the first model no shear stresses are allowed in the fracture 
zones; ii) in the second one aggregate interlock is taken into account. The 
results of two numerical examples are presented: a shear beam and a pull­
out test. First these examples are analysed with the first model using both 
randomly generated and regular meshes with the purpose of evaluating the 
mesh independence of the results. Finally mixed mode fracture is consid­
ered for the shear beam test and the corresponding results are compared 
with the ones obtained from pure mode I analysis. 
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1 

non-prescribed crack propagation in concrete is dealt with. 
crack approach as well as the fracture energy concept 

(Hillerborg et al. 1976). Cracks are allowed to evolve in a 
along fixed interfaces which are located along inte­

.-,_.,,_,.,n,_.,,, V'V\4.ut'U•...._,,"·"-'· Since cracks open according to mode I fracture, the 

2 

iJA.l.U.V.liJU..L stress component cr1 is usually not perpendicular 
P.IP.lTIPlnT boundaries. The misalignment between the fixed direction of 

mesh and the direction of mode I cracking is taken 
a way as to preserve the dissipation of energy along 

Crack evolution is modelled in two different ways. 
I cracking is considered, i.e., cracks open evolve 

I cracking. This means that no shear stresses are al­
Jl...I.'"''" ........ ..., .... ..., cracks. In order to take aggregate interlock into con-

fracture is also considered. For purpose, a 
model with a tension cut-off and a Coulomb friction 

vu.,u.v ........... These two surfaces evolve according to coupled 
shear softening rules. Although cracks still initiate perpendicu-

of cri, shear stresses can develop within fictitious 

two numerical examples are presented: a shear beam and 
a pure mode I analysis is perfom1ed with regular and 
order to evaluate the mesh independence of model. 
fracture is considered for the shear beam and the cor-

,...,.,. .. ~ ..... .-- ... ,... .. ,,, with the results obtained from mode I 

relationships adopted for concrete are pre-
regions within the material can be i) 

µv.u ..... , .. u"" to the · the fracture zones, corres-
....,..,,, ..... ...,,.._u .... F-, of concrete. A linear-elastic isotropic 0 r. 1nct1 t.•1·n 

to describe behaviour of the non-fractured zones 
L'-'H ... HVJL.ll, softening is · the stresses 

Vvl,..IV.1..1.U.HJljO., to Rankine's criterion: the r.0<'
1

<'1-•-.-n,.,•a 

JlH.JlJU. ....... , ..... to tensile strength ft. 
zones the cracks are allowed to develop according to 

approach. Softening is described, point 
stress-relative displacement relationships. Mode 

energies are assumed to be material -n.rrvn""rl1 c:"'' 
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2.1 Pure I analysis 
pure mode I analysis bilinear relationship between 

to the fictitious crack and the relative crack nr<•DT>>nH '-HuiJ.AUVV<H'-'<<O. 

ced by Petersson (1981) is adopted. Mode I fracture is assumed 
tiation and evolution of a fictitious crack: crack paths are 
to direction of the maximum stress cr1. Due to 
the principal stress directions do not vary m1tiatlon 
shear stresses are allowed at the fracture zones. 

Mixed analysis 
order to consider fracture, a U .. HJ'-"AA.A""~ 

and Rots' s multisurface plasticity model is adopted 
1997). the fracture zone, or fictitious two 
fined: the normal direction which corresponds to the direction 
tangential direction, parallel to the crack faces. For each 
vector component and a relative displacement vector are de-

The horizontal axis in fig.1 represents the nonnal stress acting at 
.......... " .... _, ..... .., crack and the vertical axis represents the stress. 
two dimensional stress two limit surfaces are adopted: a "''"'"-"' ... "''" 

surface for I failure and a Coulomb .u -""'.._ ...... ,., 

mode II failure. cut-off mode I is initially 
tensile strength of concrete ft. The friction envelope is 
characterised by the cohesion coefficient c0 and by the •n-i:-.c•rn"' 

gle ~-Both yield functions follow softening 
The mode by: 

where CTn is the nr-.~".>I stress vector r>AtY>r.An•:>.nf- rn<"'""''n-c•"' 

crack and Kn is a parameter 
We take Kn = w~ , w~ is the plastic 

surface (3) is allowed to 
(associated flow 

shear 

where crs is the r<:1nn-t:»'tlTt<:l 

tious crack, GFn is 
amount of softening. 

A 
adopted with a plastic potential gs given by: 
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(5) 

where \jJ is the dilatancy angle. 

Initial Coulomb yield surface 

Figure 1. Yield surfaces 

An isotropic softening criterion is assumed, i.e., both yield surfaces 
shrink the same relative amount in the stress space, and both keep the ori­
gin (see fig.I). 

3 Numerical Implementation 

The finite element method is used in the numerical analysis. The continuum 
is discretised by means of isoparametric 4 node elements whereas linear 
interface elements are used to represent the fictitious cracks within the ma­
terial. A trapezoidal rule is used to integrate the interface elements, with the 
integration points located at the nodes. 

In the examples presented, the crack paths are not known in advance. If 
mode I is assumed, the location of the fictitious cracks should always be 
perpendicular to the directions of the maximum principal tensile stress cr1. 
One solution consists of aligning the interface elements with the directions 
of the fictitious cracks (Ingraffea et al. 1985, Carpinteri et al. 1989). Here a 
different approach is presented where no remeshing is necessary during the 
analysis. Interface elements are located, from the beginning, along the 
boundaries of the continuum elements within zones where cracks are ex­
pected to occur. Once the mesh is defined it remains unchanged during the 
whole analysis. An evolution algorithm is introduced which takes into ac­
count the misalignment between the direction perpendicular to cr1 and the 
direction of the interfaces in the mesh. Interface elements at the crack tip 
are connected and their properties are projected onto an approximate crack 
direction, close to the direction perpendicular to cr1 (Alfaiate et al. 1997). 
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The response of the structure is evaluated incrementally and, for each 
step, the following procedures are followed: 
1. Evaluation of the incremental structure stiffness Kt; 
2. Solution of the system of equations Ktt~U = l1AF, where t1u is the vector 

of incremental displacements, t1'A is the step size and F is the vector of 
nodal forces; 

3. Detennination of the internal forces Fi. The N ewton-Raphson and the 
arc-length methods are used to obtain convergence. If equilibrium is not 
attained a new iteration is perfonned; otherwise we go to step 4; if no 
convergence is achieved after a given number of iterations, a smaller 
step is tried; 

4. Evaluation of the values of the total variables and return to 1. 

For the tests presented, a monotonic increasing opening of a main ficti­
tious crack is imposed. The step size t1'A is controlled such that the follow­
ing equation is satisfied: 

(6) 

where l1'A0 is the initially prescribed step size, t1uc are the incremental dis­
placements measured at the nodes belonging to the crack faces and t1uco 
are the incremental displacements obtained at the tip of the first fictitious 
crack as soon as it opens. 

In each iteration the arc-length method is used and the following con­
straint equation is imposed: 

(7) 

where f1Wtip is the incremental relative displacement measured at the crack 
tip along the approximate direction of cr1 and f1Wtip,I is equal to the f1wtip 
obtained in the first iteration. In this way, the same amount of incremental 
relative displacement at the crack tip is enforced in each iteration. Note that 
f1Wtip takes into account the connection between two interface elements i 
and j at the crack tip according to: 

(8) 

where !iwi and t1wj are the incremental relative displacements obtained 
fonn interfaces i and j at the crack tip, respectively, and lisi and t1sj are line 
segments along both interfaces, which are equal to half the length of the 
elements. At the beginning of each step the tangent stiffness matrix is 
evaluated. During the following iterations the tangent stiffness matrix Kt is 
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kept unchanged unless at least one fictitious crack experiences modifica­
tions such as: the constitutive relation changes from mode I to mixed mode 
or from unloading to mode I. 

4 Numerical tests 

In this Section two different numerical tests are presented: a shear beam 
and a pullout test. 

The fonner consists of a simply supported notched beam subjected to 
shear. A plane stress state is assumed. Ingraffea ( 1989) perfonned several 
experiments with this beam. The control parameter adopted in the experi­
mental tests and in the computations is the monotonic opening of the crack 
mouth sliding displacement (CMSD); the crack mouth refers to the lowest 
part of the notch and the sliding displacement refers to the relative displace­
ment measured along the vertical direction between notch faces (see fig.2). 

The second test consists of the pullout of an embedded steel disk from a 
concrete specimen. The pullout of the steel disk is made against a stee] re­
action ring (see fig. 4).The disk is assumed to be completely disconnected 
from the surrounding concrete, except for the upper surface of the disk 
where full contact is assumed. The stem is not modelled in the finite ele­
ment mesh: a uniform stress distribution is applied to the central part of the 
upper surface of the disk which corresponds to the stem. A monotonic in­
creasing upward displacement of the disk is enforced in the numerical 
analysis. This is an axisymmetric test and therefore only half of the speci­
men is shown in fig. 4. 

4.1 Pure mode I analysis 
First, the two tests are submitted to a pure mode I analysis: the fictitious 
cracks initiate and evolve in mode I. The results presented in this Section 
are obtained with two different meshes. For each test an irregular mesh is 
obtained from a regular one with the nodes randomly located within the 
neighbourhood of their initial positions. This neighbourhood consists of a 
circle centered at each initial nodal position and with a diameter equal to 
20% of the maximum side length of the rectangular elements which share 
that node. In figs.2 and 4 the deformed irregular meshes obtained for the 
shear beam and the pullout test are shown. The experimental results ob­
tained by Ingraffea lie in the shadowed region shown in fig.3. In this figure 
the load-CMSD curves obtained numerically with our model, with the 
regular mesh and the irregular mesh, are also presented. From fig.3 we 
conclude that the maximum load obtained with the present model is smaller 
than the experimental one. A better approximation of the experimental 
maximum load was obtained by Ingraffea (1989) using a discrete approach 
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with remeshing and considering aggregate interlock. From figs. 3 and 5 we 
conclude that, in both tests, no significant mesh dependence is observed. 

Figure 2. Deformed mesh obtained for the shear beam: irregular mesh 
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Figure 3. Load-CMSD curves obtained by Ingraffea (experimentally) and 
with the present model 
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reaction ring_ 

Figure 4. Deformed mesh obtained from the pullout test: irregular mesh 
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Figure 5. Pullout test: P-8 curves obtained with the present model 
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4.2 Mixed mode analysis 
The shear beam is also analysed with the multisurface plasticity model 
mentioned in Section 2.2. The material parameters adopted are: ft 2.8 
MPa; c0 = ft; GF = 0.1 N/mm; G/1 GF; ~ = 30°; \jJ = 0°. The maximum 
shear stress with no confinement is assumed to be smaller than ft (Walraven 
(1980) rec01mnends a value of 2/3ft). However, in order to stress the im-

Figure 6. Deformed mesh obtained with aggregate interlock 

JOO 

Figure 7. P-8 curves obtained without (I) and with (II) aggregate interlock 

portance of aggregate interlock, a value of c0 equal to ft is adopted. In fig.6 
the defonned mesh obtained near the formation of a mechanism is shown. 
In fig.7 both mode I (I) and mixed mode (II) load displacement (P-8) curves 
are presented. From this figure it can be seen that, in this test, approxi-
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mately the same value for the peak load is obtained with both i) the mode I 
model and ii) the mixed mode model with the material parameters adopted. 

5 Conclusions 

Two main conclusions can be drawn from these numerical tests: 
i) no significant mesh dependence is observed with the algorithm proposed 

for non-prescribed crack propagation in concrete; 
ii) with both models proposed and for the shear beam, mixed mode analysis 

and pure mode I analysis lead to approximately the same value for the 
peak load. 
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