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Abstract 
Non-planar fracture in eccentrically notched beams is studied using the 
size effect model and a mixed-mode cohesive crack model. It is seen that 
the crack path is independent of specimen size and that the brittleness of 
the failure is not influenced by its non-planarity. The cohesive crack 
analysis shows that the failure occurs mainly in mode I and is independent 

the mode II fracture energy. 
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1 Introduction 

Non-planar fracture in concrete has often been considered as mixed-mode 
(combination of modes I and II) failure (Swartz et al., 1988; Bocca et al., 
1991). However, several researchers have showed that in most of these 
cases, especially when the crack faces are not confined, the mode II 
component is negligible or non-existent (Jenq and Shah, 1988; Schlangen 

van Mier, 1992). One of the geometries that have been studied is the 
center-loaded beam with an eccentric notch (Jenq and Shah, 1988). 
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In the present work, fracture tests were performed on three different 
sizes of center and eccentrically notched beams. The size effect method is 
applied to study the change in the brittleness due to the non-planar nature 
of the crack. The load versus crack opening responses are analyzed with 
a mixed-mode cohesive model to study the significance of the mode II 
component of the energy dissipation during the non-planar failure. 

2 Experimental details 

The composition of the concrete used has the proportions of cement: sand: 
gravel:water as 1 :2.5:3.75:0.65. Spanish l/35A cement, limestone gravel 
(5-12 mm) and siliceous sand (0-5 mm) were used. Three batches 
(denoted A, B and C) of concrete were fabricated, and in each of them, 
nine beams were cast with the geometry shown in Fig. 1, three in each 
size, with d = 80, 160 and 320 mm, and thickness (b) of 50 mm. 

Notches of length l = 0.25d were cut in the beams with a diamond disc 
saw, with the eccentricities (e) of 0.625d (0.25s) for series A and 0.3125d 
(0.125s) for series B, respectively, and at midspan (e=O) for series C. The 
beams were tested at the age of 730 days, when the compressive strength 
was 27.3 MPa. All the specimens were stored in a fog room until testing. 

The beam tests were conducted in a 1 MN INSTRON servohydraulic 
machine under closed-loop crack mouth displacement (CMD) control in 
three-point bending (3PB). Constant CMD rates were imposed such that 
the peak loads occurred at about 3 minutes. The load-CMD curve of each 
specimen was recorded; the curves are shown later with the fits of the 
cohesive crack model. 

The crack paths observed on the surfaces of the specimens were 
recorded, and crack bands for each eccentricity were obtained from them. 
Figs. 2 a and b show the bands for e i= 0, from which it can be concluded 

p 

d 

s = 2.5 d 

3.125 d 

Fig. 1. Three point bend specimen 
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-6-- Crack bands of the beams with d=320 mm 

-II- Crack bands of the beams with d=160 mm 

--- Crack bands of the beams with d=80 mm 

(a) ~I (b) 

' Fig. 2. Crack bands for (a) e = 0.25s and (b) e = 0.125s 

that the crack path does not depend significantly on the specimen size 
(i.e., they are geometrically similar). Note that the bands for different 
sizes have been normalized with respect to the beam depth for the 
comparison. This agrees with the results of other non-planar fracture tests 
in the literature (Bocca et al., 1991). 

3 Application of the size effect model 

The size effect model (SEM) of Bafant is based on the ductile-brittle 
transition of the failure mode of geometrically-similar fracture specimens, 
with an increase in size. It gives the size-dependence of the failure stress 
as (Bafant and Kazemi, 1990): 

B d 
(JN = .JI+7J; f3 =do (1) 

where CJN = Pulbd is the maximum nominal stress, Pu is the peak load, dis 
a characteristic dimension of the specimen (here d is the beam depth), and 
B and d0 are empirical parameters. The brittleness number, {3, gives the 
proximity of the failure mode to ideal-brittle linear elastic fracture 
mechanics (LEFM) behavior; CJN has a constant value (signifying ductile 
failure) at {3-70 and is proportional to cf112 (which corresponds to the 
LEFM failure) at {3-700 • Parameters B and d0 are obtained by fitting 
Eqn. 1 to the CJ~values determined experimentally from different sizes of 
specimens. This form of the model is applicable as long as the crack 
paths are also geometrically similar. 

In the case of mode I, the values of B and d0 can be used to obtain 
material fracture parameters, which are theoretically independent of 
geometry effects (Bafant and Kazemi, 1990): 
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where K1c =fracture toughness, c1 = effective fracture process zone length, 
G1 =fracture energy, E =modulus of elasticity (for plane stress), CXo = lid, 
the relative notch length, g is the dimensionless energy release rate and g 1 

its derivative with respect to the relative crack length. Functions g and g 1 

depend on the specimen geometry and are obtained from LEFM analysis. 
The SEM parameters were obtained by regression analysis of O'tv 

values (from the peak loads obtained in the test and corrected for self­
weight), using the Marquardt-Levenberg least-squares algorithm. The 
normalized test data are shown in Fig. 3, along with the fit. It can be seen 
that the SEM gives the trends for all the three eccentricities satisfactorily. 
More importantly, there is no shift in the position of the data with respect 
to the LEFM criterion indicating that the non-planar nature of the crack 
does influence the brittleness of the failure. The parameters given in Table 
1, along with the coefficient of variation of the fits ( m), do not show any 
clear trend related to the notch eccentricity. The brittleness numbers for 
the three eccentricities are practically constant for each specimen size. 

As mentioned earlier, the fracture parameters K1c, c1 and G1 can be 
obtained from the data of e = O; the modulus of elasticity (E) of each 
specimen was computed from the initial load-CMD compliance using 
LEFM functions; the average E was 33.8 (±3.3) GPa. The values g(ao) = 
0.943 and g' ( ao) = 0.634 (for e = 0, ao = 0.25), obtained from finite 
element analysis, were used in Eqn. 2 to obtain K1c = 35.8 MPa-mm112

, c1 = 
16 mm and G1= 37.9 J/m2
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Fig. 3. Size effect plot for the three series 
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Table 1. Size effect model parameters 

Series eld B do (J) B 
(MP a) (mm) d=80mm d=l60mm d=320mm 

A 0.625 1.87 72 0.065 1.11 2.22 4.44 

B 0.3125 1.33 82 0.045 0.98 1.96 3.92 
c 0 1.36 74 0.079 1.08 2.16 4.32 

4 Formulation of a cohesive crack model 

The toughening effect of the fracture process zone (FPZ), which occurs in 
front of a progressing crack, is modeled as closing stresses in non­
singular cohesive crack models (cf Carol et al., 1997). 

These generally have the following characteristics: 
1. The behavior of the intact material follows a linear elastic stress-strain 

relation (without considering creep and other nonlinear material 
phenomena). 

2. The crack propagation criterion (called the fracture criterion) can be 
expressed in terms of stresses and fracture parameters, as: 
F(S_, p) = 0 (3) 

where s_ is the stress vector and I2.. is a vector consisting of material 
parameters such as tensile strength and fracture energy. 

3. In a monotonically opening crack, s_ is the cohesive stress field in the 
FPZ, and a function of the crack opening vector (J;Q): 
S = f (m) (4) 

where f is the softening function. 
In the present work, a cohesive crack model for non-planar tension­

shear (mixed mode I+II) fracture is implemented with the discrete crack 
approach, where the discontinuity is modeled in the context of the finite 
element method through interface/joint elements (Rots, 1988; Carol et al., 
1997). The fracture behavior is simulated through the constitutive law of 
the joint, which represents the cohesive crack stress-separation relation, 
and the fracture criterion Fis expressed as (Garcia-Alvarez, 1997): 

F(S_, £) = r 2 + tan 2 </J (o- - X)(2a -o- + X) = 0 (5) 

where CJ and rare the normal and shear stresses, tan</J represents the angle 
of friction between the crack faces, and X and a are functions of the 
dissipated energy. Fig. 4 represents Eqn. 5 in a graphical form. In the 
case of Mode I, Xis the cohesive (tensile) stress. For the case of mixed 
mode fracture, an explicit softening function (as in Eqn. 4) cannot be 
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derived from Eqn. 5. Consequently, implicit stress-separation relations of 
the crack are developed in terms of the mode I and mode II components of 
the energy dissipation. 

For the uncracked material, the constitutive law of the joint is linear 
elastic with stiffness coefficients Dn (normal to the joint element axis) and 
D1 (along the direction of the joint element axis). These coefficients must 
theoretically be infinite but in practice cannot be too large for avoiding 
oscillations in the stress profile (Gens et al., 1988). 

Q 

(J 

Fig. 4. Fracture criterion of the model 

The opening (m2) and the sliding (m) components of the crack 
separation can be expressed as the sums of the elastic displacement and 
the real crack opening as: 

d(J) d(J) el + dmnc r ·, n= n (6) 

where the components of the elastic displacement are: 

d el _ dC5 . d el _ dr 
mn - ' mt --

Dn Dt 
(7) 

and the real crack opening is defined as: 

dm~r = d;A., aQ ; dmr = d;A., aQ 
aa ar (8) 

where dA, is a multiplier (similar to that in plasticity theory), and Q =Fin 
tension and in compression is defined as: 

()Q = 2 tan 2 </J (a + X - er) f dil ; 
d(J 

(9) 
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with 

1da =(l-~ l a+x 
a dil )ao + Xo 

(10) 

where (Jd;z is the compressive stress beyond which there is no crack 
opening (or dilatancy). In the uncracked material, X = Xo (tensile strength) 
and a= a0 (related to the shear strength), which are parameters of Eqn. 9. 
The evolutions of x and a depend on the energy dissipation ( G) during 
crack propagation, which can be decomposed into the energies dissipated 
in mode I and mode II. G is expressed in a differential form as: 

dG = dG 1 + dGII (11) 
In this formulation, the differential of the mode I component of G is 
defined as: 

dG 1 =er dw~r if er~ O; dG1 = 0 if () < 0 (12) 

and the mode II component as: 

dG 11 = r dw~r if er ~ 0; 

dG II = (I r I - I (J I tan¢) I dmf' I - I a I dm~r if (J<0 (13) 

the above equation, it can be seen that the Gu is the difference between 
the total energy dissipated in shear ( rdmf' ), and the sum of energy 

dissipated due to friction (I CJ tan</J dmf' I ) and the energy dissipated due 

to dilatancy (I adm~r I) (Willam, 1984; Weihe and Kroplin, 1995). 

Consequently, the dilatancy is treated in a manner similar to the way 
friction has been handled in the literature (Willam, 1984). 

The evolutions of the parameters a and X are given by: 

a=ao(i-~) x=xo(i-~x) (14) 

where 

roP dGI roF dGII 
;:. _Jo Jo 1:ix- I +--Il-

GF GF 

fvcr dGI + iwcr dGII 
~a - o II o (15) 

GF 

in which G/ and G/ are the fracture energies m modes I and II, 
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respectively. It can be seen in Eqns. 14 and 15 that in the case of pure 
mode I (i.e., dGu = 0), when the FPZ is fully developed (i.e., 

s:cr dG 1 = G~ ), the cohesive tensile stress vanishes. In pure mode II (i.e., 

dd = 0), both a and X vanish when the FPZ is fully developed (i.e., 

J:cr dGu = c; ). 

5 Application of the cohesive crack model 

order to apply the model formulated in the previous section to the 3PB 
specimen, the uncracked part is discretized with triangular and quadrilat­
eral finite elements, while the crack path is represented by joint elements 
(as in Gens et al., 1988). The average crack paths obtained from the 
experimental bands (Fig. 2) were used. The computations were made 
with quadratic analysis, using the Gauss' 3x3 integration rule in 
quadrilateral elements and the 7-point Gauss' rule in triangular elements, 
and the 3-point Newton-Cotes' rule in the joints. The calculations take 
into account the weight of the concrete. In order to obtain stable solutions 
beyond the peak load, a displacement control method (Crisfield, 1994) is 
used for controlling the CMD (Garcia-Alvarez, 1997). 

the analysis, E = 33.8 GPa, the Poisson ratio= 0.2 and the density of 
the concrete = 2350 kg/m3

. The elastic stiffness coefficients of the joints 
and Dr are taken as 108 Nim. The parameter a0 is chosen to be 9 MPa 

since this gives a ratio of 10 between the compressive and tensile 
strengths. In order to consider a reasonable relation between G/ and G/, 
a parametric study of its influence was performed for the case of e = 
0.25s. It was seen that the results were insensible to ratios in the range of 
l~G/!G/dO, and consequently the ratio was set as 1 for convenience. 

other two parameters of the model (G/, Xo) are obtained by back­
fitting the experimental load-CMD curves. The data for each eccentricity 
(i.e., for all the sizes) are analyzed together in order to reduce the 
uncertainty of the parameter set. Further details of the analyses can be 
found in Garcia-Alvarez (1997). 

The experimental data for each eccentricity and their optimum fits are 
shown in Figs. 5 a, b and c. The parameter set that gives satisfactory 
simulations of the load-CMD responses in all the cases is G/ = 80 J/m2 

and Xo = 3.5 MPa. As expected (Planas and Elices, 1989), the value of G/ 
is larger than the fracture energy of the SEM. 
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Fig. 5. Experimental data with the analytical fits for (a) e = 0.25s, (b) e = 
0.125s and (c) e = 0 

As indicated by the parametric study of the influence of G/1!G/, the 
mode II component of fracture is not significant in the cases analyzed 
here, as further confirmed from the comparisons of the evolutions of 
total energy dissipation, G, and the mode I energy dissipation, G1

. Figs. 
6 a and b, these comparisons are given for e = 0.25s and e = 0.125s, 
respectively, at three points along the crack path: point 1, at the notch tip; 
point 2, at a quarter of the crack length from the notch tip; and point 3, at 
the middle of the crack path. In all the cases, the evolutions of G and 
practically coincide implying that Gn is negligible. This implies that 
non-planar fracture studied here is basically a case of mode I failure 
not of mixed-mode. 

6 Conclusions 

Tests of different sizes of geometrically similar beams with center and 
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eccentric notches have been performed. As expected, the crack paths in 
the cases of eccentric notches are non-planar and are observed to be 
independent of the specimen size. The data have been analyzed with the 
size effect model (SEM) and a mixed-mode cohesive crack model 
implemented in a finite element code. 

80 80 

60 ~ Point 1, G/ 
60 

~ ~ Point 1, GF 

l 
,/ 

fl Point 2, G / ~ 
40 # / 40 f p 

~ (!) I , Point 2, GF (!) I ! I Point 3, G/ 
I I 20 ,• -~-

20 

I Point 3, GF I I .4 
f ,• 

' / 
j) 

40 80 120 40 80 120 

CMD (µm) CMD (µm) 

Fig. 6. Evolutions of the total and mode I energy dissipation 

The size effect analyses indicate that the brittleness of the failure does 
not change due to the eccentricity of the notch and the non-planar nature 
of the crack path. 

The cohesive crack analysis show that the mode II component of the 
energy dissipation is negligible for this type of failure, and that the failure 
is primarily in mode I. The fracture energy used in this model is much 
higher than the value obtained from the SEM, as expected. 
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