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Abstract 
We propose a study of the damage at an interface which is coupled to 
an elastic homogeneous block. We use two interface representations 
based on a continuous approach for the first one, and on a discrete 
approach for the second one. The elastic block is represented by a 
hierarchical structure, which allows to have a realistic elastic interac­
tion along the interface. After a brief recall on a tool which allows to 
consider the "bifurcation" modes in a discrete model in the same way 
as for a continuous one, we show that the localisation in the interface 
occurs through a cascade of bifurcations, which progressively concen­
trates damage from the entire interface to a narrow region. For the 
discrete approach, i.e. when random heterogeneities are introduced, 
the localisation proceeds by a sequence of avalanches. In both cases, 
the analysis of size effects is also obtained. 
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Fig. 1. The model problem. 

1 Introduction 

During the failure of quasi-brittle materials, the strain field is initially 
homogeneous, then becomes heterogeneous before the apparition of a 
macro-crack that propagates up to the rupture. This singular transi­
tion is well-described for the class of continuous models. For instance, 
the loss of uniqueness or the loss of stability are currently used to de­
tect this transition (see e.g. Hill (1959), Lemaitre (1992), Bazant 
and Cedolin (1991)). On the other hand, these criteria could not be 
employed for rate dependent models, or for discrete models. The so­
lution of the problem is always unique, and no bifurcation occurs. We 
present in this paper a tool that allows to describe the bifurcation in 
the discrete model in the same way as for the continuous one. Then, 
we propose to study a very simple model, that represents a damage 
interface connected with an elastic bloc (Fig. 1). Two cases are con­
sidered for the interface. First, we use a continuous approach, and we 
propose a complete description of the post-bifurcation branch. We 
show that damage concentrates from a half-part of the interface to a 
narrower and narrower region, through a bifurcations cascade. The 
damage profile at the onset of the first macro-crack is also obtained. 
Then, we include some heterogeneity in the interface by introduc­
ing Daniels' models instead of continuous elements. Again, we show 
that in this case the localisation occurs through a similar cascade of 
bifurcations. 
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2 The stability analysis for the discrete model 

First of all, in order to compare the two approaches, we have to 
write an equivalent of the loss of stability for a discrete model. The 
main difference between the two apporaches is the response of the 
considered system. In the continuous case, the response is smooth, 
but is not unique. Then, an usual stability criterion can be easily 
computed, from the calculation of the stiffness operator. On the other 
hand, the response of a discrete model has fluctuations superimposed 
on the mean behaviour due to the presence of heterogeneities. The 
solution of the problem is now unique, like in reality, but no tangent 
stiffness operator could be computed because of these fluctuations. 
Then, no usual criteria could be used to detect a bifurcation point. 

However, by using the concept of avalanches (Hemmer and Hansen 
1992), one can elaborate an equivalent of such a criterion. An avalan­
che of size f::l. in the direction - r1, is defined as the number of fibers 
that break under a given load (Fig. 2). One can show (Delaplace et 

F 

I 
I 

/~ ' ,' Jr q A' / I/,' I 
/ a1/k,'1 

I cf ,,., .... .,,,,.. 
I t ... 

.' ,' 
I 

I 

u 

Fig. 2. A 8-size avalanche observed in a direction -r1,. 

al 1998) that the divergence of the avalanche mean size, observed 
a relevant direction - r1, that depends on the system, corresponds to 
the first bifurcation of the equivalent continuous system. 

Let us now consider the failure behaviour of our problem, an 
terface coupled with an elastic block. 
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3 The hierarchical model 

In order to study the localisation and the damage at an interface 
loaded in mode I, we introduce a basic representation of the prob­
lem: the interface is a raw of damageable elements, coupled in se­
ries with a continuous elastic block. We propose to represent this 
elastic block by a hierarchical structure: The elastic block is subdi-

Fig. 3. The two first decompositions of an elastic block. 

vided in one upper block, and two lower blocks. This transformation 
is reiterated for the lower blocks while a sufficient decomposition is 
not reached. Then, damageable elements are coupled in series with 
the lower blocks. Hence, for a 10-generation system, the interface is 
composed of 210- 1 == 512 elements. The blocks have just an elastic 
behaviour, and can be considered as a discretisation of the block. By 
choosing a stiffness of k / 2 for the lower blocks, and a stiffness of k 
for all the others, the stiffness structure is independent of the chosen 
generation. This simple structure allows to make calculus on large 
system sizes, and include a realistic elastic interaction. In order to 
characterize this interaction, we need to introduce a distance along 
the interface. The distance d which separates two elements is defined 
as the generation of the smallest block of size j that separates the 
two elements: 

d = 2i-l - 1 (1) 

Then, we can compute the displacement v of the block i when a force 
F is applied on the block j. It is just: 

BF 
v(d) ==A log( d )k + vo (2) 

with A= 1/ log 2 and B == 2n. This is exactly the form of the Green 
function for a semi-infinite plan as expected. 

Then, we have to write the relations that drive the hierarchical 
system. We call Ffn) (U(n)) and FJn) (U(n)) the response force(F)-
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displacement(U) of two n-generation system. Their association gives 
an+ 1-generation system. The global force of the system is: 

(3) 

and the global displacement is: 

p(n) (U(n)) + p,(n) (U(n)) 
uCn+l) = u(n) + 1 2 

k 
(4) 

These two equations give a parametric representation of a n + 1-
generation system. We now introduce two representations of the in­
terface. 

3.1 The continuous interface representation 
In this part, we use a continuous description of the interface. The 
damageable elements are here continuous elements, with a classical 
damage law. Note that in this case, no heterogeneity is introduced. 
Then, two n-generation systems have exactly the same behaviour 
(F1 == F2) and the equation 4 is transformed into: 

This equation relies the global displacement to the interface displace­
ment, u(F) == U(1)(F). We can now compute the tangent (subscript 
tg) and the secant (subscript sc) stiffness of the entire system at 
generation n: 

K (n) -
tg -

K(n) = 
SC 

(
1 - 21-n + 21-n )-1 

k 1-2u 

(
1 - 21-n + 21-n )-1 

k 1- u 

(6) 

The stability analysis of the system can be done easily. The bifurca­
tion condition is written (Bazant and Cedolin 1991): 

dU(n) 

dF == O (7) 

or: 
k + K(n-1) + K(n-1) = 0 

SC tg (8) 
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For a large generation system, and by using equation 5, we can com­
pute the interface displacement at this point: 

* 1 2 k 10 4 k2 
-3 

Ul = 2 + 3f1 + ( 9 k - g) fy + Q (fl ) (9) 

where damage localizes over the length f 1 = 2n-l = L on the inter­
face. L refers here to the number of damageable elements. Note that 
u 1 corresponds effectively to the first bifurcation point. The other 
displacements correspond to a lower length than f 1, and then occur 
much later during the failure. At this point, a half part of the in­
terface starts to unload, as the other one is still loaded. Then, the 
same processus is reiterated in this loaded part, and damage localizes 
progressively, through a cascade of bifurcation points. 

3 .1.1 Post-bifurcation response 

Knowing the first bifurcation point, and by using the recurrence 
relations of the hierarchical structure, we can compute the post­
bifurcation response. Note that we use here directly the interface 
behaviour, chosen to be the asymptotic response of a Daniels' model 
with a uniform distribution between 0 and 1 for the thresholds. Any 
other distribution could be used in the same way. When the first bi­
furcation point is reached in an+ I-generation system, an-generation 
subpart system is elastically unloaded, as the other one is still loaded. 
The response of the global system is the addition of the two responses. 
We call (1/2 + x~n), 1/4 - Yln)) the displacement-force coordinates of 

the first bifurcation point. From equation 5, we know that the x~n) 
form a geometric sequence of ratio 1/2: 

(n) _ (1)2-n 
X1 - X1 

By using the interface law, we can compute the Yin): 

(n) _ ( (1))24-n 
Y1 - X1 

(10) 

(11) 

Any point (1/2 + x, 1/4 - y) of the (n - 1)-generation equivalent 
homogeneous interface law is transformed into (1/2+x',1/4 - y') 
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such that: 

I
x' - x 

y' -y 
(12) 

The computation of the successive bifurcation points gives for large 
system size: 

{ 

x)n) == Xll)2-nj 

(n) _ ( (1))24-n (( 1 (1) 
Yj - Xi 4x1 1 . 2 4 ) -k)41 + -kj - -k 

18 3 9 
(13) 

Hence, the bifurcation branch is perfectly described through the ex­
pression of the bifurcation points. 

3 .1. 2 The damage profile 

With the previous expression, we have access to any variables of 
the system. For instance, we can introduce and compute a damage 
variable D in the interface. D is chosen here to vary between 0 and 
1, and to be linear with displacement. By using the previous defined 
distance d, and after the bifurcation branch (that corresponds to the 
creation of the first macro-crack), the damage is: 

1 k 
D(d) == 2 + 2d (14) 

This expression is quite unusual, with a very slow decay of the damage 
with the distance, and gives an "infinite length" of the damage zone 
ahead of the crack. 

3.2 The discrete interface representation 
We now use a discrete representation of the interface: the damageable 
elements are represented by Daniels' models. A Daniels' model is just 
a set of parallel fibers, clamped between two rigid bars. The fibers 
have an elastic fragile behaviour. The stiffness of the fibers is the 
same, chosen to be 1 for simplicity. The only random variable is the 
threshold t, where the fibers break irreversibly. For each fiber, the 
threshold is chosen through a probability distribution function p(t), 
or its cumulative distribution P( t) == JJ p( t') dt'. This model could be 
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solved analytically. For instance, the mean force F, divided by the 
number of fibers, is: 

F(u) = (1- P(u))u (15) 

Remember here that the stiffness of the fibers is 1, then a fiber i 
breaks for a displacement u =ti. The system is now a set of Daniels' 

Fig. 4. A 3-generation system, with a discrete interface. 

models joined through a hierarchical structure (Fig. 4). Again, we 
are interested by the bifurcation and post-bifurcation response. For 
such a discrete representation, the failure of the interface is unique, 
and no criteria of loss of stability can be computed. 
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Fig. 5. The response of the interface for a 11-generation system. 

However, as mentioned in section 2, one can show that the study 
of avalanches in a direction k, where k is the stiffness of the elastic 
block, allows to write an equivalent to a stability criterion for the 
continuous models. Then, we can compare directly if the discrete 
model gives the same result than for the continuous one. First of 
all, we can note the good agreement of the response of such a model 
with the continuous one: Fig. 5 shows the response of the interface 
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for a 11-generation system, with 10 fibers for each Daniels' model. 
The continuous response is represented by a dotted curve. The line 
is the direction of the observed azalanches, that corresponds to the 
first bifurcation point. 

As we saw before, after the first bifurcation point, damage localises 
through a bifurcation cascade in a narrower and narrower region. 
This behaviour is exactly the same for the discrete model: on Fig. 6 
is represented the location of the fibers for a 12-generation system, 
with 10 fibers for each Daniels' model. The y-axis is the succession 
of the broken fibers under the loading. 
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Fig. 6. The representation of the broken fibers. 

4 Conclusion 

We ,have used two approaches to study the bifurcation branch in a 
softening band coupled with an elastic block. After reintroduce a tool 
that allows to compare the bifurcation behaviour in the continuous 
approach and the discrete one, the following points are observed: 

• The damage in the interface is first homogeneous, and then con­
densate progressively into a more and more narrow region, until 
one element is damaged to failure, providing an initiation -site 
for crack propagation. 

• The bifurcation points that lead to the crack formation are well 
defined, and a disordered system follows the global evolution of 
the homogeneous case, with a similar localisation condensation. 
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• Just before the apparition of the crack, the damage profile is 
obtained as an inverse power law, and is spread over all the 
interface. 
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