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Abstract 
Refined higher-order displacement model for the behavior of concrete 
beams incorporating gradient dependent plasticity regularization is 
presented. This theory incorporates a more realistic nonlinear variation of 
longitudinal displacements through the beam thickness. The discrete 
problem size is significantly reduce due to the use of an original 
multilayered approach based on simplified kinematics. 
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1 Introduction 

Localization of deformation into narrow bands of intense straining caused 
by strain softening is a characteristic feature of plastic deformation. It has 
been experimentally observed in many engineering materials, such as 
concrete, rocks and soils. Localization phenomena are often associated 
with a significant reduction of the load-carrying capacity of the structures, 
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hence, the onset of localization is naturally considered as the inception of 
failure of engineering structures. Considerable efforts have been devoted 
over the last decade to obtain a comprehensive understanding of the 
problem and to describe this behavior quantitatively. However, numerous 
attempts to simulate the behavior with softening plasticity or damage 
theories failed in the sense that the solution appeared to be fully 
determined by fineness and the direction of the finite element 
discretization. The underlying reason of this pathologically mesh 
dependency is the a local change of character of the governing equations, 
which results in a loss of well-posedness of the boundary value problem. 
More details and references on these aspects can be found in the papers by 
Pijaudier-Cabot et al. (1988) and Lasry and Belytschko (1988). 

To remedy the situation, generalized continuum theories should be 
adopted. These models incorporate an internal length parameter which 
plays the role of localization limiter, that is, a parameter that allows to 
control the localization zone size by preventing loss of ellipticity of 
governing equations. This internal length parameter can be introduced 
through the incorporation of higher order derivatives leading to the so­
called gradient continuum theories. The capabilities of gradient 
dependence have been investigated for both softening plasticity and 
damage models, de Borst and Muhlhaus (1992), Muhlhaus and Aifantis 
(1991) and Peerlings et al. (1995). Recently, formulations and algorithms 
for gradient dependent models have been presented in a finite element 
context, Benallal and al. ( 1997), de Borst et al. ( 1993), Comi and Perego 
(1996), Meftah (1997a,b), Parnin (1994) and Peerlings et al. (1995). 

In a gradient plasticity model the yield strength depends not only on the 
effective plastic strain but also on its Laplacian. Therefore, even if 
gradient dependent models bear the significant advantage of being local in 
a mathematical sense, the increment of the plastic strain can not be 
obtained at a local level since the consistency condition which governs the 
plastic flow becomes a second order partial differential equation. One 
possibility is to use a finite difference method. The algorithm is then a 
sequence of separate approximate solutions of the equilibrium problem 
using finite elements and the plastic yielding problem using finite 
differences, Belytschko and Lasry (1989). A more general approach is to 
use only finite elements and to solve the two coupled problems 
simultaneously, de Borst and Muhlhaus (1992). For this purpose, it was 
required to satisfy weakly the yield condition and todiscretize the plastic 
strain field in addition to the standard discretization of the displacement 
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field. Therefore, C1 continuous shape functions, for the plastic strain field 
interpolation, are needed in order to compute properly second gradients of 
the equivalent plastic strain. As a consequence, this mixed formulation 
leads to an oversized discretized problems making the calculations 
unreasonable. Therefore, a nonlinear layered finite element approach is 
developed, Meftah (1997a). It consists in a quasi-bidimensional method 
which allows to perform finite element analyses with a reduced number of 
degrees of freedom and, thus, does not require much calculation cost and 
large amount of memory work-load. 

The paper will focus on the use of gradient plasticity theory, as a 
localization limiter to predict objectively failure, incorporated in a beam 
theory to describe Mode-I failure analyses showing a warping of the cross 
section of the beam. The multilayered model is presented and illustrated 
with an example. It seems to be a promising approach allowing to extend 
the applicability of the gradient plasticity regularization. 

2 Finite element formulation 

The essential feature of the gradient plasticity theory is the dependence of 
the yield function 

(1) 

upon the second order spatial gradient of the plastic strain measureK, cr 
being the stress tensor. This gradient dependence makes difficult to 

determine the increments of the plastic multiplier A, which represents a 
measure of plastic flow intensity, Meftah (1997b ). The main reason is that 
the consistency condition which governs the plastic flow is a partial 
differential equation. Therefore, It has been proposed, de Borst and 
Muhlhaus (1992) to satisfy the yield function together with the equilibrium 
equation in a distributed sense, de Borst and Muhlhaus (1992), 

J 8/v F( <J, K, V2K) dQ = 0 

nA. 

J 8u · divcr dQ = 0 

n 

(2) 
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and to discretize the plastic multiplier field A in addition to the usual 
discretization of the displacement field u. As for classical mixed 
formulations, additional degrees of freedom A related to the plastic 
multiplier are then introduced in the finite elements besides the nodal 
displacements a such 

(3) 

where N is the classical shape function matrix for displacement, B is the 

matrix that lies nodal displacements to strains, H = [H 1, ... ,Hnt is a 
certain C1 shape functions vector related to the plastic multiplier field and 

allowing to compute properly its Lapalcean, i.e. P = [ V2Ht>···, V2 Hn r. 
By considering the above discretizations of the two fields, the 

variational equations obtained from the weak satisfaction of both 
equilibrium and yield conditions (Eq.2), and requiring that these identities 
hold for any admissible variations 8a and oA, we obtain the set of 
algebraic equations that govern the incremental equilibrium process in 
gradient plasticity 

(4) 

with the elastic stiffness matrix Kaa, the external force vector fe and the 

internal force vector fi defined conventionally, and the off-diagonal 

matrix KA.a and the gradient-dependent matrix KA.A. defined in, Meftah 

(1997a). Further, fA. is the vector of non-standard residual forces which 
emerges from the inexact fulfillment of the yield condition. 

In two or three dimensional analyses using continuum elements, the use 
of gradient plasticity as a localization limiter leads to sizable problems 
making the calculations unreasonable. Indeed, a large number of nodal 
parameters related to the plastic multiplier field are to be considered due to 
the continuity requirements on this field ( C1 continuity). Therefore, a 
layered approach allows to perform finite element analyses with a reduced 
number of degrees of freedom. 
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3 Multilayered finite element model 

In a previous multilayered approach based on gradient plasticity, Meftah 
(l 997b ), the behavior of beams was satisfactorily approximated by the 
elementary Euler-Bernoulli theory of bending. The main assumption in 
this theory is that the transverse normal to the reference middle plane 
remains so during bending, implying that the transverse shear strain 
becomes zero. Thus, the bending rotation becomes a first derivative of 
transverse displacement and, hence, the theory requires the transverse 
displacement field to be C1 continuous. The Euler theory may lead to 
serious discrepancies in the case of deep beams with small aspect ratios 
where shear effects are significant. Further, the resulting finite element 
formulation turns out to be computationally inefficient to describe failures 
with a warping of the cross section of the beam. These drawbacks was 
illustrated by different examples, Meftah (1997a). 

In order to predict a more realistic behaviour for small aspect ratio 
beams, the transverse shear stress and strain, their parabolic variation 
across the depth and the warping of the cross section are taken into 
account. The following kinematics assumptions on the displacement field 
are then made, Salomon et al. (1997), 

u(x,y) = u(x) + y ~(x) +~(Nx) + dv) y3 
u = 3h dx (5) 

v(x,y) = v(x) 

where u and v are respectively the axial and transverse displacements,~ is 
the rotation of the normal to the undeformed middle plane to the deformed 
shape, and d denotes derivation. The last term of the right hand side of the 
upper part of equation ( 5) gives the expression of the warping function, 
which is related to the nodal displacements and then makes need to the use 
of C1 shape function only. 

The elastic constitutive relation is then given by 

[:] = [ ! ~ J [;] (6) 

with r and G the shear stress and the shear modulus respectively andE 

Young's modulus that relates axial stress CY to axial strain £. The strains, 
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computed from the kinematic assumption made in equation (5) taking into 
account the warping of the cross-section and allowing to stresses to satisfy 
locally the equilibrium equations and the shear-free boundary condition, 
are then given by 

c;(x,y) = au(x,y) =au+ yap -~(a~+ a2vJ y3 
ax ox ax 3h2 ax ax2 

E= 

y = au(x,y) +av= (~(x) + dv) (i-4 iJ 
ay ax dx h2 

(7) 

where h is the thickness of the beam. This relation allows then to define 
the matrix B that lies nodal displacements to strains. 

Concerning the plastic multiplier field, no assumption can be made 
concerning its variation through the cross section. This one is then divided 
into superposed layers giving the variation of the plastic multiplier by 

mean of nodal parameters A k = (A~, A 1) at each layer k. Here, one 

dimensional C1 continuous interpolation polynomials are considered for 
the plastic multiplier field. In order to avoid stress oscillations, the use of a 
CJ quadratic interpolation for the displacements seems advisable (the 
Babuska-Brezzi conditions for mixed finite elements in compressible 
solids, Zienkiewicz (1991 )). 

The obtained beam finite element has a mixed character and presents a 
variable number of degrees of freedom, that is the displacement 
components of the reference axis of the beam and the plastic multiplier 
components corresponding to each layer 

(8) 

where n is the number of layers and a g is a vector gathering the nodal 

values of the two fields. We then obtain the algebraic equations, given by 
relation (9), to solve for the layered beam element in gradient plasticity 

where the stiffness matrix [Kaa], the coupling matrix [ K~a], the 

gradient-dependent matrix [ K ~A.] and the non standard residual forces f ~ 
are defined m, Salomon et al. (1997) for the particular finite element 

976 



developed. The subscript k indicates that quantities are computed with 
respect of the considered layer. 

[Kaa] [K~r [K~r [K;'., r da fe -fi 

[Kq [K~Al [o] [o] dA1 f 1 'A 

[ K_~a] [K~A l dAk f k . (9) 
[o] [o] 'A 

[K~a] [o] [o] [K~'A] dAn f n 'A 

Not that only axial stress flow, related to cracking, is affected by 
gradient regularization. The shear stress is considered here to follow an 
elastic behavior during loading process. This avoids to introduce a second 
plastic multiplier field related to shear stress when assigned to have a 
softening behavior. 

4 Validation 

b=70 mm 

L=400mm 

CJ 

y 

tension shear 

a E=40000 N/mm2 

G=20000 N/mm2 

ft=3.6 Nlmm2 

E Gr0.11 Nlmm 

compression 

Fig. 1 Cantilever beam: geometry, mesh and material configurations 

The elaborated model is applied to a Mode-I concrete fracture problem of 
a concrete beam under static loading with the use of the tensile fracture 
energies Gr as a material parameter. The objective of this validation is to 
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show that the model gives a reliable results, though it is based on a 
simplified kinematic. Note that in all calculations the tangent stiffness 
operator is employed in full Newton-Raphson scheme. Displacement 
control have been used. A tolerance of 1 o-6 is assumed in a convergence 

with an energy norm. 
geometry and the material data for the cantilever concrete beam of 

1 are given in, Salomon et al. ( 1997). The beam is discretized using 
the multilayered beam finite element where the represented layers 
correspond to only the plastic strain interpolation over the height of the 
beam. Note that the displacement degrees of freedom are those of the 
reference axis of the beam. Deformation control is used; the vertical 
displacement 8 of the load application point is enforced. 

Fig.2 presents the incremental deformations of the beam. It is observed 
fracture does not localize in one element-wide vertical band at the 
edge, which would be the case for a local approach, but is distributed 

to the neighboring elements due to the gradient regularization. The crack 
patterns are represented by the isovalues of the plastic/fracture strain. The 
same localization zone and post peak load-displacement diagram are 
obtained even if the mesh is refined in the penter of the beam made, 
Salomon et al. (1997). Further the deformed shape shows a visible 
warping of the cross section ensured by the incorporation of a higher order 

theory, notable at the free edge of the beam. 

Fig. 2 Cantilever beam : deformed configuration and crack pattern 

5 Conclusion 

emphasis here is to establish the credibility of the layered formulation 
to predict Mode-I failure in deep beams with small aspect ratios, especially 
when warping is concerned. While the discussion is limited to a particular 
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type of loading and boundary conditions, this theory can be used to tackle 
any type of loading and boundary conditions making it a promising 
approach. Compared to the conventional two dimensional finite element 
model (plane stress and plane strain configurations), the multilayered 
element method, that follows from the beam theory, allows a lower 
calculation cost and a smaller amount of memory work-load. Further, the 
uniaxial character of the plastic flow ensures the stability of the iterative 
process with a quadratic convergence (a maximum of 10 iterations all 
the presented examples). 
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