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Abstract 
Recently, simulation of bending failure of RC members was successfully 
done where concrete was modelled by a classical plasticity model with 8 
nodded cubic element and the reinforcement was modelled as 2 nodded rod 
element. Though the analysis was successful, umealistic confinement effect 
was noticed near the stirrup in the compression zone. In this paper, a 
simplified beam element is proposed for modelling of reinforcement in 
compression region. Sectional properties are calculated at gauss points and 
integration is done to calculate the stiffness matrix. Though the results 
looks promising, the model is still in the developing stage. 
Keywords: Reinforcement, beam, Unified Concrete Plasticity Model. 

1 Introduction 

Many of the structures in recent years have undergone severe damages due 
to earthquakes. In most of the cases, the failure phenomenon are quite three 
dimensional in nature. Though two dimensional analysis of RC members is 
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enough in the initial stage, three dimensional(3D) analysis is important in 
the simulation of the behaviour in the failure stage. Discrete crack approach 
has rarely been applied to 3D analysis. Most of the classical plasticity 
models take different criteria for tension and compression and their 
application in general conditions are difficult. Moreover, the classical 
plasticity models face the problems related to mesh sensitivity. Recently, 
various non-local approaches are being proposed to take care of the mesh 
sensitivity problems. However, these non-local approaches are still in the 
formative stages. It was realised that a combination of a good plasticity 
model with some practical implementation of the non-local formulation 
would be a practical way of analysing reinforced concrete structures. 
Hence the authors are at present engaged in the development of a classical 
plasticity model, named Unified Concrete Plasticity Model, in 3D stress 
space (Tanabe et. al.(1994), Gupta and Tanabe(1997,1998), Gupta(1997) 
and Gupta et al.(1998)) with the hope of implementation non-local 
approach with this model in future. 

3D analysis of various bending and shear failure problems of concrete 
structures were done using this model successfully. After these analysis, it 
was realised that proper modelling of the reinforcement is also an 
important factor and requires further attention. 

In the analysis of RC members failing in bending mode, the modelling 
of reinforcement in tension for RC beam under two point loading and 
cantilever column with lateral loading required different implementation of 
tension stiffening effect(Gupta and Tanabe(1998) and Gupta(1997)). In this 
problem, unrealistic high confinement was noticed near the stirrup 
(modelled as 2 nodded rod element) in the compression zone. 

In this paper, this problem is analysed by modelling the reinforcements 
in compression zone using a proposed beam element to take care of the 
effect of decrease of compressive strength due to lateral deflection. This 
implementation is done for the main reinforcement and the stirrup in central 
critical compressive zone only. 

Pallewatta(1993), Pallewatta et. al(l995) have used beam element for 
column under axial compression. Nakamura et. al(1997) have used beam 
element to separately analyse the reinforcement element under compression 
to derive the appropriate stress-strain analysis of reinforcement for direct 
implementation in finite element analysis. Though both these methods are 
effective, in these cases the sectional moment curvature relationship are 
calculated and the stiffness term EI is obtained from the slope of the 
sectional M-<j> characteristics. 

A new beam element modelling for the reinforcement is proposed in 
this paper. Sectional properties are calculated at gauss points and the 
stiffness matrix is directly calculated by gauss point integration technique. 

In this paper, first a short review of the Unified Concrete Plasticity 
Model used for modelling of concrete is presented, followed by the 
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formulation, verification and application of the beam element as 
reinforcement in compression zone. 

2 Unified Concrete Plasticity Model 

Drucker Prager .j2J; 

Surfure ' ······ .. 

a) Meridian Plane b) Diviatoric Plane 
Fig.l. The initial yield surface for Unified Concrete Plasticity Model 

Fig. 1 shows the initial shape of the yield surface of the Unified Concrete 
Plasticity Model. This model is a modified Drucker-Prager model where a 
parameter y is introduced in the denominator of Eq. 2, which is dependent 
on 11 and 8 (Eq .4) to get triangular shape in tensile region and more 
circular shape in compressive region. 
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where 11, 12 and13 are stress invariants; cos38 = (3-/31 3 ) I (2J~5 ); <P1=14° is 

a material constant. Cohesion c and friction angle <j> are the most important 
parameters depending on the damage w. The change of frictional angle <j> 

and cohesion c is assumed to be different in case of tension and 
compression zone. An appropriate smooth variation between the two zones 
was proposed based on X(= / 1 I .jil;'). The material parameters are such 

chosen that biaxial peak strength match the Kupfer' s peak strength envelop 
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Fig. 3. Stress strain behaviour 

(Fig. 2) and proper stress strain curve uniaxial tensional and compression 
(Fig. 3). The tension stiffening or fracture energy for tension can be easily 
taken care by modifying the c-m relation as is shown by Gupta et. al(1998). 

3 Reinforcement in Compression as Beam Element 

Reinforcement in the central t EB ~ f/1J 
top compression zone (Fig. 7) are 1, ~ 
modelled as beam element(Fig. 4) - - . 
with the following assumptions: r Fig. 4 3 nodded beam element 

a) Displacement and strain are small and the beam is initially straight. 
b) The reinforcement is parallel to the either of the x or y axis and the 

problem of co-ordinate transformation is avoided. Hence, it is only 
sufficient to consider bending effect due to vertical deflection. 

c) The section is considered square as the first step of implementation. 

Here (Ni, ui ), (Vi, wi ), (Mi, 8i) are the nodal variables. The element has 
3 nodes. 2 gauss points are used for integration as the first step. The 
relationbetween the general co-ordinates and displacement with nodal co­
ordinates and displacement in terms of r (the local co-ordinate) are 

3 

xr = _LN;(r)x; (Sa) 
i=l 

(Sb) 

where N(r) is the cubic polynomial shape function and the calculations for 
Jacobean (a scalar quantity here) is given as 

[I]= [ax I a r] = [ t.( aN,(r)/ a r)x,] (6) 
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The strain components are given as 

{E;}r -{a:;~::e}' -}:{r'a~,/ar r'a;,far i }{:·}=Bu (8) 

<j> r ae I ax i-l o o r 1a;i I ar e; 
The stress-strain at each strip can be calculated at each gauss points as 
£x(r,tj)=£x+(h/2-t)</J (9) 

ax(r,tj) = f(cx(r,tj)) = f(Ex,<j>) (10) 
where n is number of sections, and tj is the distance of the centre of jth 
section from the top. Axial, bending forces, shear terms are calculated as 
N = f axdA (function of £x and cp) (1la) 

A 

M = f ax(h I 2- t)dA (function of £x and cp) (1lb) 
A 

V =aGyA (function of y) (11c) 
where G = E I 2(1 + µ), µ=0.3 for steel. N, M and V can be assumed as the 

stress tensor at the gauss points related to the strain at the gauss points as 

a(r,tJ = {N V Mr= f(cx,Y ,¢) (12) 

The stress tensor in the incremental form can be written as 
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The stiffness matrix and the nodal force vectors can be calculated as 
K = f BT DBdl (15a) 

l 

F =JET adl (15b) 
I 
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To verify the validity of this 
formulation, the reinforcement 
between stirrups is modelled as a 
simply supported beam with two 3-
nodded beam element(Fig. 6). 
Fig. 7a shows the axial stress-strain 
behaviour when vertical force is first 
applied to a particular level and then 
axial load is applied keeping the 
vertical load constant. Fig. 7b shows 
the behaviour when axial force is 
applied to a particular level and 
vertical load is applied keeping the 
axial load constant. When the beam 
element is pulled without central 
vertical force, it resembled the 
stress-strain curve. In these 
calculations, increase of application 
of either vertical force at the centre 
or the axial force gradually 
decreases the capacity of the axial 
force or vertical load respectively 
and results looks logical. 

4 Analysis and Discussion 

Vertical 

~ Axial Force 
Force 

AF=! : :::::a.__... 
Fig.6: Beam Element Formulation 
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Fig. 7. Parametric Study of the beam 
element behaviour using two elements 

The concrete is modelled as 8 nodded cubic element and the reinforcement 
is modelled as two nodded rod element or as three nodded beam element. 
A RC beam under two point loading is adopted (Fig. 7a). Only a quarter 
section of the beam is taken for analysis. Fig. 7b shows the mesh adopted. 

Tanabe and Gupta(1998) and Gupta et al.(1998) explained that tension 
stiffening effect and fracture energy concepts should be implemented for 
RC members if the member is expected to fail in bending or shear mode 
due to sufficient or insufficient reinforcement respectively. This matter is 
still being investigated. Hence here tension stiffening effect is implemented. 
The parameters for concrete are Ec=34600 MPa, µ=0.22, f 1 =3.15 MPa, fc' 

= 33. 75 MPa, c0 = 22.58 MPa , </J1 = 14°, </J
0 

= 5°, <jJ1 = 36°, m1 =4.0, m2 =0.83, 

Y] 0 = 7.0MPa,k=1.0x10-3
, w1 = 1.0, /3' = 35, y = 0.92, a1= -1.0 and a2 

= -0.15(refer Tanabe and Gupta(1998) for further details). 
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4.1 Reinforcement modelled 
as rod element 
Gupta and Tanabe(1998) 
modelled the reinforcement 
with two nodded rod element. 
Comparison was done to find 
the proper implementation of 
tension stiffening effect for the 

Table 1: Parameters for Reinforcements 

Case fy slope fyl slope 
(MPa) (x Es) (MPa) (X Es) 

A 370.0 0.0001 - -

B 323.4 0.00785 - -

c 323.4 0.00785 370.0 0.0001 

reinforcement element in tension as shown in Fig. 8. In case A, a bilinear 
elastic-perfectly plastic curve with post yield slope = 0.01 % of Es was 
taken for stability of the analysis. In case B, a bilinear curve with 
approximate apparent yield stress and higher slope to simulate tension 
stiffening effect was taken. In case C, a trilinear curve with case B type 
bilinear curve in the beginning and change to case A type curve (with yield 
stress of fy1 and post yield slope of 0.01 % of Es ) at the intersection point 
was taken. Fig. 1 Oa shows the comparison with experimental results. It was 
realised that proper implementation of tension stiffening effect was very 
important to simulate the results at the yielding point of the reinforcement. 

Though the results matched well when tension stiffening effect was 
implemented, final failure phenomenon could not be captured. Unrealistic 
confinement effect was noticed near the stirrup in compression zone(Fig.9). 

4.2 Reinforcement in compression modelled as beam element 
In the present analysis, the reinforcement (stirrup and main reinforcement) 
are modelled as two nodded rod element except for the reinforcement in 
compression zone as shown by the dark lines in Fig. 7c. Fig. 7d,e,f show 
the details of the beam element adopted as reinforcement in compression 
region. 

In this case, the 8 nodded element need u, v and w displacements and 
the beam element need u or v, w and ex or ey for main reinforcement and 
stirrups respectively. It is assumed that the outer nodes of the beam element 
is connected with the nodes of the cubic element( no slip) and the central 
node of the beam element is free and not connected with the cubic element. 
In other words, force is transferred between the beam 
element(reinforcement) and the cubic element(concrete) only through the 
outer nodes of the cube. Hence, u or v and w displacements are assumed as 
common variables between the beam element and the cubic element. The 
rotational degree of freedom of the outer nodes and the degrees of freedom 
of the central unconnected node of the beam element are considered 
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independent of the degrees of freedom of the cubic element. Fig. 7d shows 
the number of degrees of freedom and possible boundary conditions. 

Fig 7e shows the modelling for the stirrups. Fig. 7f(l) and (2) shows the 
formulation of the main reinforcement modelled as beam elements that are 
unconnected and connected with each other at stirrup location respectively. 
The reality should be something in between as the beams will undergo 
plastic deformation near stirrup location. Hence, the outer nodes of the 
beam element connected with the cubic element would have 3 translation(u, 
v and w) and 1 or 2 rotational degrees of for connected and unconnected 
beam element respectively. The central node of the beam element needs 3 
degrees of freedom. The rotation degrees of freedom and the required 
degrees of freedom of translation is restrained at the symmetry section. 

For the beam as reinforcement element in compression, tension 
stiffening effect in not implemented as it is part of compression element. 

The results of the analysis are shown in Fig. 1 Ob. Before the apparent 
yielding of tensile reinforcement, from where the load deflection diagram 
becomes more ductile and increase in load with increasing deflection is 
less, we can see that the load-deflection diagram matched well between the 
different cases. It implies, there is not much additional advantage of 
implementation of beam element at this stage. 

However, based on the fact that results matched well in this region, it 
can be said that the beam element modelling is correct. After this region, 
convergence problems were faced and the reasons are being investigated. 

5 Conclusions 

Three dimensional analysis of reinforced concrete beam under two point 
analysis showed (Gupta and Tanabe (1998)) unusually high confinement 
effect near the compression stirrups. Implementation of beam element in 
place of the rod element is a usual solution. Most of the researchers use 
non-linear beam element by calculating the stiffness parameter EI from the 
slope of.the M-<P relationship. 

In this paper, a simplified formulation for modelling of reinforcement as 
beam element in compression zone is proposed where the non-linear 
behaviour is implemented at the gauss points. For implementation in .the 
actual FEM analysis, a number of assumptions were made. 

When beam element was implemented as reinforcement in compression 
region, the load displacement behaviour matched with the previous 
analytical results where rod element was used. However, convergence 
problems were noticed at the yielding stage. Hence we can say that, this 
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formulation looks simple and promising. Further work is being done to 
investigate the reasons for the convergence problems. 
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