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Abstract 
A new method for fracture analysis of reinforced concrete structures is 
proposed. The concrete is modeled as an assembly of distinct elements 
made by dividing the concrete virtually. These elements are connected by 
distributed springs in both normal and tangential directions. The 
reinforcement bars are modeled as continuos springs connecting elements 
together. A brief comparison between the proposed method and other 
numerical techniques like FEM, RBSM and EDEM is carried out to show 
the strong points of our proposed method. 
Key words: nonlinear analysis, fracture analysis, large deformation, 

reinforced concrete. 

1 Introduction 

Failure analysis of reinforced concrete structures has been mainly carried 
out using the Finite Element Method (FEM). However, the FEM assumes 
that elements are connected by nodes and these nodes are not permitted to 
separate during the analysis. Moreover, separation of elements at node 
location results in stress singularity at the crack tip location. The FE 
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analysis is appropriate mainly before the generation of extensive cracking. 
On the other hand, many techniques were developed to deal with 

cracks. These techniques, such as Smeared Crack approach, Okamura et 
( 1991 ), can not be adopted in zones where separation occurs between 

adjacent structural elements. While, Discrete Crack Methods, Okamura et 
al. (1991), assume that the location and direction of crack propagation are 
predefined before the analysis. To deal with these problems, many other 
methods were developed. The Rigid Body and Spring Method, RBSM, 
Kawai ( 1980), is one of them. The main advantage of this method is that 
it simulates the cracking process with relatively simple technique 
compared to the FEM, while the main disadvantages is that crack 
propagation depends mainly on the element shape, size and arrangement, 
Kikuchi et al. (1992) and Ueda (1993). One of the.recent methods to deal 

fracture analysis of concrete is the Modified or Extended Distinct 
Element Method (MDEM or EDEM), Meguro et al. (1989,1994). This 
method can follow the highly non-linear geometric changes of the 
structure during failure, however, the main disadvantages of this method 
are that in some cases accuracy is not enough for quantitative discussion 
and it needs relatively long CPU time compared with the FEM and 
RBSM. 

The major advantages of the proposed method are the simplicity in 
modeling and accuracy of the results in short CPU time. Using the 
method, highly nonlinear behavior, i.e. crack initiation, crack propagation 
and totally collapse process of the structure can be followed with high 
accuracy. 

2 Element Formulation 

The two elements shown in Fig. 1 are assumed to be connected by 
pairs of normal and shear springs located at contact points which are 
distributed around the element edges. Each pair of springs totally 
represent stresses and deformations of a certain area of the studied 
elements. The total stiffness matrix is determined by summing up the 
stiffness matrices of individual spring around each element. Failure of 
springs is modeled by assuming zero stiffness for the spring being 
considered. Consequently, the developed stiffness matrix is an average 
stiffness matrix for the element according to the stress situation around 
the element. In the 2-dimensional model, three degrees of freedom are 
considered for each element. This leads to a relatively small stiffness 
............ ..,.._.._,,. (size: 6x6). Stiffness matrix is developed for an arbitrary contact 
point with one pair of normal and shear springs as shown in Fig. 2. In this 
formulation, the element stiffness matrix depends on the contact point 
location and the stiffness of normal and shear springs. 
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Fig. 3 Tension, compression and shear models for concrete 

2 Material Modeling 

Spring stiffness is calculated for each 
spring according to the stress situation 
and material type of each spring. 
Material models used are shown in 
Fig. 3. One of the main problems 
associated with the use of rigid 
elements for representation of 
reinforced concrete is the modeling of 
diagonal cracking. Applying Mohr­
Coloumb 's failure criteria calculated 
from normal and shear springs, not 
based on principal stresses, is not 
correct. This assumption leads to 
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Fig. 4 Principal Stress 

determination 

b 

increasing the resistance of a structure and inaccurate fracture behavior of 
the structure. To determine the principal stresses at each spring location, 
the following technique is used. Referring to Fig. 4, the shear and normal 
stress components (t and o) at the point (A) are determined from the 
deformation of normal and shear springs attached at the contact point. 
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The secondary stress (a2) is calculated from normal stresses in points (B) 
and (C). This value of principal stress, (op) is compared with the tension 
resistance of concrete. When op exceeds the critical value of tension 
resistance, the normal and shear spring forces are redistributed in the next 
increment by applying the shear and normal spring forces in the reverse 
direction. The redistributed forces are transferred to the element centroid 
as a force and a moment in the next increment. The redistribution of 
spring forces at the crack location is very important in following the 
proper crack propagation. For the normal spring, the whole force is 
redistributed to have zero tension stress at the crack faces as shown in Fig. 
3(a). To consider the effects of friction and aggregate interlocking, a 
redistributed value (RV), shown in Fig. 3(b), is adopted. 

3 Effects of Element Size and The Number of Springs 

To illustrate the effects of element size, a series of analyses was made for 
the laterally loaded cantilever structure using the models as shown in Fig. 
5. Elastic analyses were performed by the proposed method for the 
different cases. The results were compared with those obtained from 
elastic theory. The ratio of error in maximum displacement and the CPU 
time (CPU: DEC ALPHA 300 MHz) are shown in the figure. To study 
the effects of the number of connecting springs, two different analyses 
were performed using 20 and 10 springs connecting each pair of adjacent 
element faces. From the figure, it is evident that increasing of the number 
of base elements leads to decreasing of the error but increasing of the 
CPU time. The error becomes less than 1 % when the number of elements 
at the base increases to 5 or more. Although the CPU time in case of 10 
springs is almost half of that in case of 20 spring, its results congruent 
with those of 20 springs. 
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Fig. 7 Shear stress distribution at the column base 

Figs. 6 and 7 show the normal and shear stress distribution at the base of 
the studied columns for different number of base elements. From these 
figures, the followings can be noticed: 
1 Calculated normal stresses are very near to the theoretical values even 

in case of smaller number of elements at the base. 
2 Shear stress values are constant for the same element. 
3 Shear stress values are far from the theoretical values in case of 

smaller number of elements and the error decreases when the number 
of elements increases. 

This means that the elements of relatively large size can be used to 
simulate the behavior for cases where the effects of shear stresses are 
minor, like case of slender frame structures. On the other hand, in case of 
walls and deep beams, elements of small size should be used to follow the 
fracture behavior in the shear dominant zone. 
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4 Effect of Element Arrangement 

To check the accuracy of our model in comparison with. other numerical 
techniques using rigid elements, such as RBSM and DEM, Brazilian test 
simulation was performed on concrete cubes subjected to concentrated 
loads. Three different mesh configurations were used. The distance 
between loading points is 20 cm in all cases and 10 springs were set 
between each two adjacent faces. The results and configuration of the 
problem are summarized in Table 1. Theoretical failure load is 12.5 tf in 
cases (1) and (2). In this simulation, compression failure under the 
applied load is not permitted. 

Fracture 
Criterion 

Proposed 
Method 

(Principal 
Stress) 

Failure Load 

RBSMor 
DEM type 

(Normal 
and Shear 
Stresses) 

Failure Load 

Table 1. Brazilian test results of concrete cubes 

Case (1) Case (2) Case (3) 

12.5tf Not failed Not failed 

From the results, it can be noticed easily that the obtained failure load 
in our simulation not change for different mesh arrangement, while 
failure load could not be calculated using material models used by RBSM 
or DEM for 45° discretization mesh of case (2). This means that results 
obtained by RBSM or DEM depend mainly on the element discretization, 
Ueda et al. (1993). This is mainly due to the use of Mohr-Coloumb's 
failure criterion based on two components of stresses (not based on 
principal stresses), the spring stiffness which is not determined a 
proper way to simulate the element deformation, Kikuchi et al. (1992), 
the use of relatively large sized elements, and the use of relatively small 
number of springs between edges which leads to an inaccurate failure 
mechanism. 
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5 Simulation of Two-Storied RC Wall 

To verify the accuracy of the model, the simulation results are 
compared with the experimental results of a two-storied RC wall. The 
size and shape of the wall, reinforcement and loading location are shown 
in Fig. 8. For more details about the columns, beams and wall 
reinforcement, or the material properties, refer to Hajime et al. (1976). 
The wall is modeled using 1,845 square elements. The number of springs 
between each two adjacent faces is 10. Reinforcement locations are 
defined by their nearest spring coordinates. 

Figure 8 shows a comparison between measured and calculated load­
rotation relations. First, to discuss the effects of load increment failure 
process, three models of different load increments, calculated by dividing 
the estimated failure load by 50, 250 and 500, with the constant number 
(10) of springs were used. Next, to study the effects of the number of 
connecting springs between faces, additional simulations were carried out 
using the case of 250 load increments with 5 and 2 springs between faces 
and the results were compared with those obtained with 10 springs. The 
fa~lure loads calculated in all cases were within the range of 64 to 70 tf 
while the measured one was 67 tf. The calculated failure load using the 
FEM was 64 tf, Okamura et al. (1991). In general, the calculated failure 
loads are very close to the measured ones. The results of 50, 250 and 500 
increments are almost congruent up to at least 95% of failure load. As the 
CPU time is proportional to the number of increments, the CPU time in 
the case of 500 increments is 10 times higher than that of 50 increments. 
To avoid long CPU time, relatively large value of load increment can be 
used till about 90% of expected failure load. From Fig. 8, agreement 
between experimental and numerical results is fairly good 250 
increments with 10 or 5 connecting springs. 
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Fig. 8 Relation between load and wall rotation for 2-storied RC 
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Surprisingly, for the case of 250 increments with only 2 springs 
connecting each two adjacent faces, the results are also reliable till 
reaching failure of the structure. It is also noted that using large sized 
load increments leads to the results in slightly higher failure load (70 tt) 
while using a few number of connecting springs gives slightly lower one 
(64 tt). This means that our model gives reliable results even when using 
a few number of connecting springs or relatively large sized load 
increments. 

Although increasing the number of springs leads to increasing the 
calculation time required for assembling the global stiffness matrix, the 
time required for the solution of equations, which is dominant when the 
number of elements is large, does not change because the number of 
degrees of freedom is independent of the number of springs used. This 
means that we can use larger number of springs between edges without 
significant change of the CPU time. On the other hand, as the total 
number of connecting springs used is generally large, it is necessary to 
use the computer with large memory capacity. 

Figure 9 shows the relation between load and the number of failed 
springs for each increment. Cumulative curves also show the total 
number of failed springs till that increment. It can be noted that although 
the number of increments in both cases is different, both of the cumulative 
curves are close to each other. This gives good indication that the 
solution is generally stable. Excessive cracking begins to appear when the 
applied load is about 28 tf. At the same load, behavior of the structure 
begins to be highly nonlinear. 

Figure 10 shows the deformed shape during the application of load in 
case of 500 load increments with 10 springs. The location of cracks and 
crack propagation can be easily observed and they are very similar to 
those obtained from the experiment. This means that the proposed model 
can be applied for fracture behavior of RC structures, such as, failure 
load, deformations, crack generation, crack location and crack 
propagation, etc. 

It should be emphasized that although the shape of elements used in the 
simulations are squares, it does not affect the crack generation or crack 
propagation in the material. Diagonal cracks, as shown in Fig. 10, 
coincide well with those obtained from the experiment. In the simulation 
using rigid elements, like RBSM (Kawai, 1980), shapes and distributions 
of elements were decided based on the assumption that cracks were 
generated and propagated in previously expected locations and directions. 
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Fig. 10 Deformed shape and crack locations of the 2-storied RC 
wall structure (in case of 50(J increments with 10 springs between each 

two adjacent faces, Simulation Scale Factor=30) 
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6 Conclusion 

A new technique to simulate nonlinear and fracture behavior of structures 
was proposed. Through the comparison of obtained results with 
experimental and numerical results by other methods, it was shown that 
this technique could follow elastic behavior, crack initiation and 
propagation, and mechanical behavior till collapse with reliable accuracy 
in reasonable time. By the use of this technique, cracking behavior can 
be followed without previous knowledge about the location of cracks and 
crack propagation direction. Because elements can be separated, this 
technique can be extended easily to follow the post failure behavior of 
structure and till total collapse. 
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