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Abstract 
Strain localization of concrete is a phenomenon such that the 
deformation of concrete is localized in finite region along with 
softening behavior. In this paper, a unified micromechanics-based 
model which can be applied to the analysis of the strain localization 
in concrete under both uniaxial tension and uniaxial compression is 
proposed and effective moduli are derived. Then, consistent 
algorithms for finite element modeling of the strain localization in 
concrete under compression are developed and applied to finite 
element analysis of the strain localization in concrete. 
Key words : concrete, strain localization, unified model, 

consistent algorithm, finite element analysis 

1 Introduction 

Strain-localization behavior of quasi-brittle materials like concrete is 
a phenomenon such that the deformation of materials is localized in 
finite region along with post-peak strain-softening behavior. When 
the strain localization occurs in concrete, the deformation is 
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localized in finite zone and the final failure occurs in the localized 
zone. It is known that total behaviors or ultimate loads of concrete 
structures are governed by the localization behavior (Horii 1993). 
In this paper, a strain-localization model which is applicable for 
concrete member under both uniaxial compression and uniaxial 
tension is proposed by assuming that concrete under strain 
localization consists of localized zone and non-localized zone. From 
the proposed model, effective elastic moduli and modified effective 
elastic moduli of concrete under strain localization are obtained by 
applying micromechanical averaging techniques. For the finite 
element analysis of strain localization in concrete under compression, 
consistent algorithms are developed for the localized zone and 
non-localized zone by assuming that elasto-plastic strain-softening 
behavior occurs in the localized zone of concrete and damage 
unloading behavior occurs in the non-localized zone. 

2 Unified model of strain-localization concrete 

Fig. 1 shows strain-softening stress-strain curves obtained from 
compression test for different lengths of concrete specimens (van 
Mier 1986). Fig. I also shows that the size effect of post-peak 
behavior exists and the final failure is localized in finite region. 

Based on the experimental observation, a concrete specimen 
under strain localization can be idealized with localized zone A and 
non-localized zone B as shown in Fig. 2(a). The stress-strain 
curves for two regions (curve A and curve B in Fig. 2(b)) can be 
obtained from measured deformations at each regions. After the 
peak, strain softening occurs in the localized zone and unloadiµg 
occurs in the non-localized zone. The stress-strain curve of the 
specnnen (i.e., curve C in Fig. 2(b )) is the averaged stress-strain 
curve. 
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Fig. I. Strain localization and size effect 
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(a) specimen under uniaxial compression (b) stress-strain curves 

Fig. 2. Model for strain localization of concrete 

The finite localized zone can also be observed in tension test as 
m the compression test, but a major crack in the localized zone 
occurs and governs overall post-peak behavior of concrete. 

In order to model the strain-localization phenomenon of concrete 
under both uniaxial compression and uniaxial tension in a unified 
manner, we consider that the strain localizes into finite size QL 
( Qs.Qsl) in the concrete member of length L after the peak. 
The averaged strain increment ( L1 E) L after the peak of 
specimen under strain localization can be written as, 

(1) 

where, Llc P is strain increment in the localized zone, Ae u is strain 
increment in the non-localized zone. Then, an effective elastic 
modulus E* can be obtained from relationship between averaged 
stress increment (A a> L and averaged strain increment <A e) L. 

2.1 Effective moduli for uniaxial compression 
Fig. 3 shows the concrete member under compression idealized as 
the softening behavior occurs Ep ( O in the localized zone 
and the elastic unloading Eu > O in non-localized zone ( 1 - Q)L . 
The averaged stress increment in the localized zone equals to that 
the non-localized zone. Thus, an effective elastic modulus having 
size-effect parameter Q can be obtained as follows, 

(2) 
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Fig. 3. Compression model for effective moduli 

Using the self-consistent concept (Willis 1977), the Eu of the 

non-localized zone can be replaced by the E* as shown in Fig. 
3( c ). Then, a modified effective elastic modulus can be derived as, 

(3) 

2.2 Effective moduli for uniaxial tension 
The concrete member under the uniaxial tension is also assumed to 
have zone QL . But, in case of the uniaxial tension, a crack 
represented by crack opening displacement 81 in the localized zone 
due to strain localization after the peak exists as shown in Fig 4(a). 
Using averaging technique, averaged strain increment ( L1 s) !JL m 

the localized zone QL after the peak stress can be written as, 

(4) 

Then, an effective modulus EQ for the localized zone QL can 
be obtained from the relationship between the averaged stress 
increment < L1 a> !JL and the averaged strain increment < L1 s> !JL, 

i.e., 

E.Q - (5) 
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Fig. 4. Tension model for effective moduli 

where D1 is the slope of tension-softening curve. By applying the 
averaging technique at the model of Fig. 4(b ), one can obtain an 
effective modulus E* as, 

E* = (6) 

Equation ( 6) shows that the modulus E* includes the term L 
of size effect and is independent of the size of the localized zone 
QL . By the self-consistent concept, the Eu can be replaced by 

the E* as shown in Fig. 4( c ). Thus, a modified effective elastic 
modulus can be derived as follows. 

2Eu+ LD1 
(7) 

2.3 Analysis results and comparison with experiments 
In order to verify the effective moduli derived from the proposed 
model, analysis results are compared with the experimental results 
by van Mier (1986) for uniaxial compression case and with those 
by Shah and Gopalaratnam (1985) for uniaxial tension case. 

2.3 .1 Uniaxial compression case 
By using the effective moduli ( eqns (2) and (3)) numerical analyses 
are performed for specimens having different lengths (50mm, 
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lOOmm, and 200mm). In the analysis, the post-peak softening curve 
by Saenz (1964) is used for Ep in the localized zone. The size of 
the localized zone QL is assumed to be N times of the maximum 
aggregate size Gmax i.e., QL = NGmax . Figs. 5, 6, and 7 show 
the analysis results and comparisons with experimental results. 

2.3.2 Uniaxial tension case 
By using the effective elastic moduli (eqns (6) and (7)), numerical 
analyses are performed for different lengths of specimens ( L, 2L 
and 4L) under uniaxial tension. In the analysis, the D 1 is 
obtained from the tension-softening curve proposed by Shah and 
Gopalaratnam (1985). Fig. 8 and Fig. 9 show analysis results and 
compansons. 
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by uniaxial tension 

3 Finite element modeling of strain localization under compression 

3.1 Modeling of localized zone 
For modeling of the localized zone in concrete under strain 
localization, a general Drucker-Prager failure criterion which can 
consider nonlinear strain softening as well as hydrostatic-pressure 
dependence of concrete is introduced in terms of the hydrostatic 

stress p' and effective plastic strain ep ; 
-p 

/(. s,p, e ) (8) 

where 11 s 11 is the norm of deviatoric stress s. The k(p, ep) m 
equation (8) can be written as follows. 
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k(,p, -~/) k(, (/) - {f a . p 

a-0 + 0-eP + (a"" - a0)[I-e-p-e']-{f a· p 

(9) 

where a0 is initial yield stress, <J is linear hardening modulus, <Joo 

is fmal yield stress, P is hardening exponent, and a is material 
parameter for hydrostatic-pressure dependence. 

The return-mapping algorithm which is an effective procedure for 
integrating the elasto-plastic problem numerically is employed and a 
consistent tangent modulus (Simo and Taylor 1985) for the quadratic 
convergence of solution at iterations is derived as, 

c,.+1= K1®1+2c-Pc 1-t1®1HaKCY.-n il®1+2ccr-P) n.0 n. (10) 

where K is bulk modulus, G is shear modulus, ii ( = s / II s II ) 
is the unit vector normal to the yield surface, I is the second 
order unit tensor, and /3 and r are defined as follows, in which 

-p 

k' = a k( 3p ) and ST is elastic trial deviatoriC StreSS. 
a e 

- a p + {f k - 2 k' 

fl = 11 s II ' r = 3 2G+ _2_ k' 
3 

3.2 Modeling of non-localized zone 

(11) 

During the strain localization of concrete, damage-unloading is 
assumed to occur in the non-localized zone. In order to consider 
nonlinear elastic-damage for the non-localized zone, the free energy 
function ¢ ( E, q) is modified with g ( q) as follows. 

¢ ( E, q) = ~ K( tr E)
2 + Gg{q) II e II 2 (12) 

where tr e. is trace of strain e., II e II is the norm of deviatoric 
strain e, and g(q) is defined as, 

g(q) 
l -e-q/a 

- p + (l-/3) q/a : a E[O,oo], /3 E[O,l] (13) 
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where damage parameter q = II e II . 
Using a = ~ ~ , one can obtain a constitutive equation as, 

a = K( tr E) 1 + 2G g ( q) e (14) 

and the differentiation of equation (14) gives a consistent tangent 
modulus as follows. 

C = KI® 1 + 2G [ g'(q) · n® e + g(q) · Ic1ev ] (15) 

where n = __ e_ 
II e II 

ae 
and Idev= a E. 

3.3 Analysis results 
For the finite element analysis of strain localization in concrete 
specimen under compression, three different lengths ( L, 2L and 
4L) of concrete specimens having same size of localized zone 
QL ( = 0.4L) are analyzed and then three same size of specimens 

having different sizes ( 0. lL , O. 2L and O. 4L ) of the localized 
zone are also analyzed using finite element program implemented 
with the developed algorithms. The mesh size of an element in 
finite element discretization is constant as O. IL. In the analysis, the 
plastic material parameters adopted are O"o = 0. 243 , a= - 2, O"oo 

=0 .343, .B= 10 and a=O .I and alos the damage material parameters 
a=O .3 and /3=0 .14 are used. The analysis results as shown in Fig. 

10 and Fig. 11, respectively, show that decrease in slopes of the 
stress-strain curve and stress-displacement curve in the post-peak 
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Fig. 10. Sress-strain curves 
for different specimen 
lengths 
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range, i.e., more softening behavior, is obtained by increasing 
specimen size or decreasing localized zone length as observed in the 
experiments (van Mier 1986). 

4 Conclusion 

this paper, concrete under strain localization is modeled with 
localized zone and ri.on-localized zone and the effective ~lastic 
moduli are derived by applying micromechanics-based averaging 
technique to the proposed model. Using the effective moduli, the 
concrete specimen under strain localization are analysed and 
compared with experimental results. Then, consistent algorithms for 
finite element analysis of strain localization behavior in concrete 
under compression are developed by considering plasticity and 
damage. Using finite element program implemented with the 
developed algorithms, strain-localization behaviors of concrete under 
compression are simulated. 
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