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Abstract 
A numerical model is proposed to study the behaviour of RC beams during 
the transition from the pre-cracked stage to the post-cracked one. During 
this transition, the softening branch of load-defection diagram, which is re­
markable in lightly reinforced beams, is modeled by means of bond-slip and 
fracture mechanics and compared with experimental results. 
Key words: bond-slip, cohesive crack, fracture mechanics, lightly-RC 
beams 

1 Introduction 

In the frame of beam theory, deformability is usually defined by means of 
the moment-curvature relationship M-1/r. Due to cracking phenomenon, in 
reinforced concrete (RC) beams it is difficult to define univocally and pre­
cisely a cross-sectional moment curvature relationship. In fact, for the same 
bending moment M it is possible to obtain different curvatures llr for 
cracked or uncracked cross sections. For this reason, for a representative 
portion of the beam, an average curvature comprised within stage I and 
stage II curvatures (Fig. 1) is usually considered. 
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Fig. 1 Moment-curvature (M-1/r) relationships 

Therefore, the behaviour of a beam could be modeled by means of par­
ticular moment-curvature relationships able to smear or average out all the 
different cross sectional curvatures of the considered portion ("cross section 
models"). This approach is adopted, for example, in CEB (1993), where the 
curvature l!r is obtained for a given M, by a suitable reduction ("tension 
stiffening") of stage II curvature. However, the definition of an average cur­
vature referred to a long beam portion with many cracks, is representative 
only for beams subjected to a virtually constant bending moment (Ferretti 
1996). Conversely, some problems raise for beams characterized by peaks 
or high gradients of the bending moment diagram (Giuriani and Rosati 
1984a). In these situations "local" type M-1/r relationships, obtained by us­
ing representative portions delimited by two consecutive cracks, work bet­
ter. Local type M-1/r relationships are usually numerically obtained by 
means of the so-called "block models", which remove the hypothesis of per­
fect bond between steel and concrete and allow a slip between the two ma­
terials. 

However, due to the randomness of the crack pattern, the distance be­
tween two consecutive cracks is uncertain and a univocal definition of the 
"local" M-1/r relationship is still impossible. For this problem, in Avalle et 
al. (1994) a block model is proposed, able to encompass, in a region called 
"range", all the possible M-1/r curves (Fig. 1). Both in cross sectional and 
block models, the first cracked stage, which corresponds to the transition 
from the uncracked (stage I) to the stabilized crack pattern, claims for par­
ticular attention. In this situation, a simplified change of deformability as 
the linear joint between the pre-cracked stage and the post cracked one pro­
posed in Fig. 1, could be oversimplified for a reliable structural analysis 
(Giuriani and Rosati 1984a). In fact, when the first crack forms, both the 
tests carried on controlling the displacement (Bosco et al. 1990) or the crack 
mouth opening w (Giuriani and Rosati 1984b; Planas et al. 1995) show a 
remarkable softening behaviour (e.g. dashed line in Fig. 1). 

As pointed out by Giuriani and Rosati (1984b), the study of the softening 
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branch, which is particularly important in lightly-reinforced concrete 
beams, requires the knowledge of the local behaviour near the crack rather 
than classical sectional theories of RC beams. In effect, in the early cracked 
stage, crack width is very small and it seems necessary to take into account 
the bond-slip behaviour between reinforcing steel and concrete, as well as 
non-linear fracture mechanics of tensile concrete. Since the first studies by 
means of fracture mechanics, the local deformability near a crack is usually 
considered by assuming perfect bond between steel and concrete. There­
fore, the deformability of lightly reinforced concrete beams is attributed 
only to fracture mechanisms in the process zone which can be defined (Ger­
stle et al. 1992) by using a cohesive model (e.g. CEB 1993; Liaw et al. 
1990), by means of LEFM (Bosco and Carpinteri 1992) or by considering 
both a cohesive model and LEFM (Balunc et al. 1992). 

The models based on the aforementioned hypothesis provide consistent 
results only when perfect bond occurs. This is true, for example, when the 
crack affects only the concrete cover. On the contrary, when the crack goes 
through the reinforcing zone, slip between concrete and bars occurs and the 
perfect bond hypothesis does not hold at least in a certain zone of the beam. 
This zone, comprised between the crack and the point where slip extinguish­
es, is named "transmission length ltr"· Within the transmission zone, the 
variation of stresses and strains in steel and concrete due to bond stresses 
should be considered. In the literature, the bond-slip behaviour is included 
(Bazant and Cedolin 1980; Planas et al. 1995) by using an experimental 
pull-out relationship coupled with a cohesive crack model. As the pull-out 
relationship is only global, no information is provided within the transmis­
sion length. 

Aim of this paper is to propose a numerical model which is able to study 
the stable or unstable behaviour of RC beams during the formation and 
growth of the first crack, by computing the stress and strain fields within the 
transmission length ltr . 

2 Numerical model 

The flexural deformability of RC beams where one crack is present (Fig. 2) 
should be studied by means of a two dimensional analysis, by using, for in­
stance, the finite element method (e.g. Riva and Plizzari 1992). Neverthe­
less, by introducing a suitable simplified strain profile in every cross-section 
of the beam, the problem can be solved by means of a one-dimensional anal­
ysis, as already proposed for tensile members (Fantilli et al. 1998). 

In this way, the beam of Fig. 2 is divided in two different portions. With­
in the first portion, of length ltT' the tensile stresses of the reinforcing bar are 
transmitted to the surrounding concrete by means of bond stresses 't. Con­
versely, within the second portion, perfect bond occurs and stage I condition 
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[1] Giurani and Rosati (1984b) 

[2], [3] Bosco et al. (1990) 

[4], [5] Planas et al. (1995) 

Fig. 2 Three point bending beam: a) two analyzed portions; b ), c ), 
d), e) stress and strain hypotheses; f) geometrical and me­
chanical properties of the beams tested by various authors 

applies (Fig. 2e). In the midspan cracked cross section (Fig. 2b), the strain 
profile for the steel and uncracked concrete is assumed to be plane. More­
over in the same cross-section, the crack width w varies linearly from the 
crack mouth (y = hw) to the crack tip (y = 0). In the fracture process zone, 
cohesive stresses are introduced by means of a fictitious crack model. Ac­
cording to Giuriani and Rosati (1987), whose model was valid for plain con­
crete beams, the cohesive stresses propagate in the diffusion zone depicted 
with dotted hatch in Fig. 2a. In a generic cross section within the diffusion 
zone (Fig. 2c ), plane strain profile is assumed for steel and concrete in com­
pression, whereas the strain of tensile concrete above the diffusion zone lays 
on a different plane. Considering the same cross-section, only the equilib­
rium condition is required in the diffusion part of height hp. Finally, for a 
cross-section comprised between diffusion and stage I zones, the strain pro­
file is represented by considering two different planes (Fig. 2d). For age­
neric section of the block, together with these compatibility assumptions 
(Fig. 2), the equilibrium equations are considered, namely: 
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JCT cdAc +as. As = 0 

Ac 

I a · y dA +a · y ·A = M(z) c c c s s s 
Ac 

(la) 

(lb) 

where <Jc and as are the stresses in concrete and steel respectively, Ac and 
As are the areas of concrete and steel and M(z) is the applied bending mo­
ment. 

For a portion of the beam of infinitesimal length dz, the equilibrium 
equation for the reinforcing bar alone can be written: 

da Ps 
-d s = A. 't(s(z)) 

z s 
(2) 

where p s is the perimeter of the reinforcement in tension, while 't( s( z)) is 
the bond stress. Referring to the same portion of the beam, it is also possible 
to define the slip s( z)=s s< z)-s J z) as the difference in the displacements be­
tween two initially overlapping points belonging to steel and concrete. 
Hence, by derivation with respect to z: 

ds 
- = -[£ (z) - £ (z)] 
dz s c 

(3) 

where cs is the strain of the reinforcing bar and cc is the tensile strain in 
the surrounding concrete. To solve the problem, the equilibrium and com­
patibility equations must be associated with the constitutive laws of the ma­
terials and with the bond-slip relationship 't-s. In particular, the ascending 

a) b) c) d) 't 
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Fig. 3 Adopted constitutive laws: a) stress-strain relationship for 
concrete in compression (CEB 1993); b) cohesive relation­
ship for tensile cracked concrete (Liaw et al. 1990); c) stress­
strain relationship for reinforcing steel (CEB 1993); d) bond­
slip relationship (CEB 1993) 
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branch (Fig. 3a) of the relationship proposed by CEB (1993) is considered 
as reference for concrete in compression. Concrete in tension is assumed to 
have a linear elastic stress-strain relationship, with modulus of elasticity 
up to the ultimate tensile strength fct . Initial tension crack starts to form 
when the tensile strength of concrete fct (Fig. 3b) is reached in the midspan 
section of the beam. The crack is modeled by means of the fictitious crack 
model represented by the relationships of Liaw et al. ( 1990) shown in 
ure 3b: 

CT c = fct if W s; w 1 

W-WI 
if 0 s=fct-0.7·fct· _ w1 <ws;w2 (4) W2 WI 

W3 w 
(J = 0.3 ·f . if w 2 <ws;w

3 s ct w
3 W2 

For the stress-strain relationship of reinforcing steel in tension or com­
pression, the bilinear law depicted in Fig. 3c is assumed. 

In accordance with CEB (1993), the following bond-slip 't-s relation­
ships are adopted: 

"~" e-r max s
1 

if os;s<s1 

't = 't if s 1 s;s<s2 max 
(5) 

(s - s2 ) 

't = 'tmax ( 'tmax 't ) . if s 2 s;s<s3 f (s3 - s 2 ) 

't = 'T,f if s ZS3 

with the proposed CEB (1993) reduction of bond stresses near cracks. 
For the solution of the problem, in addition to the foregoing equations, suit­
able boundary conditions are also adopted, that is to say, cohesive stress 
condition for cracked section and stage I condition for the sections with 
perfect bond. From a mathematical viewpoint, Eqs. 1 - 5 (which generally 
cannot be uncoupled), together with the boundary conditions, constitute a 
differential "two point boundary value problem". In principle, this problem 
can be solved with the aid of various numerical analysis techniques, such as 
relaxation through finite differences, finite element methods and shooting 
techniques. The shooting method was adopted herein for the numerical so­
lution (Ferretti 1996). In particular, to avoid double solutions due to the sof-
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Fig. 4 Some numerical outcoming for the beam [4] 

tening phenomenon, the crack mouth opening (CMOD) is assumed as the 
independent variable (Fig. 2a). In this way, Eqs. 1 - 5 can be integrated 
starting from the cracked cross section up to the opposite state I cross sec­
tion, where it is necessary to control if all the boundary conditions are veri­
fied. If these requirements are not satisfied, the initial value of hw must be 
adjusted by means of a trial and error procedure. 
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Fig. 5 Comparison, for the beams of Fig.2f, between the proposed 
model and the experimental data 

3 Numerical results 

For an imposed value of w, the solution of the problem yields the distribu­
tion along the beam of all the static and kinematic unknowns (Fig. 4): the 
state of tensile stress in concrete an steel (act' as), the slip (s) and the bond 
stress ( 't). When the state of stress and the consequent state of strain are 
known, it is possible to plot the moment-rotation relationship M-<I> by in­
creasing crack width w, as shown in Fig. 5a for the beam [l] whos·e mechan­
ical and geometrical properties are collected in Fig. 2f. In Fig. 5a, the 
remarkable softening branch of the M-<P diagram, measured in the test re­
sults of Giuriani and Rosati (1984b) by means of the overlapping moire, is 
correctly simulated. Therefore, the proposed model seems also capable to 
compute correctly the load-displacement P-11 response of RC beams during 
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crack growth. In particular, in Fig. Sb, the numerical and experimental P-11 
diagrams of the beams [2] and [3] of Bosco et al. (1990) (whose mechanical 
and geometrical properties are still represented in Fig. 2f) are compared. 
Moreover Fig. 5 shows a substantial agreement between numerical and ex­
perimental outcomings, both for the beam [2] having a low value of the brit­
tleness number N =(fy FfJ· 5 A,)!( Kie Ac) (Carpinteri 1984 ), and for the beam 
[3] having an higher value of Np_ (Fig. 2f). The same agreement still remain 
by reducing the dimensions of the beams, as shown in Fig. Sb for the mem­
bers [4] and [5] tested by Planas et al. (1995). If the first crack appears when 
the applied bending moment M reaches the value Mer the subsequent 
growth of the crack is sometimes accompanied by a remarkable increase of 
M, as pointed out by the numerical and experimental analyses of Fig. 5. 
When the maximum value of Mis reached (effective crack bending moment 
Mc/ of Fig. 1), the tensile stress of concrete act in the stage I zone could 
exceed the tensile strength fct without the possible growth of a new crack. 
This paradox can be eliminated, for example, by removing the stage I 
boundary condition and by assuming only a ct = fct at the bottom of the sec­
tion wheres= 0. In this way, as shown in Fantilli (1998), the paradox dis­
appears without significant effects on the results. Hence, the choice of the 
boundary condition does not appear to be a crucial aspect regarding the sof­
tening simulation. 

4 Conclusions 

The comparison between numerical outcomings and test data allows to state 
out the following conclusions: 
· since the proposed model is able to simulate correctly the remarkable sof­
tening branches due to the first crack formation, it seems useful for a correct 
structural analysis between the pre-cracked stage and the post-cracked one. 
·Moreover, as the model can define correctly the structural behaviour of RC 
beams with different brittleness number and scales (Fig. 2f), it could be em­
ployed to compute the minimum reinforcement ratio and to put its size-de­
pendence into evidence (Bosco and Carpinteri 1992). 
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