
Fracture Mechanics of Concrete Structures 
Proceedings FRAMCOS-3 
AEDIFICATIO Publishers, D-79104 Freiburg, Gennany 

CONTACT, CLOSURE AND FRICTION BEHAVIOUR OF 
ROUGH CRACK CONCRETE SURFACES 

M. Barri-Brunetto, A. Carpinteri, and B. Chiaia 
Department of Structural Engineering, Politecnico di Torino 
Torino, Italy 

Abstract 
Concrete-to-concrete friction contributes in many cases to the stability of a 
structure. In concrete dams, the assessment of safety under the presence of 
large cracks is combined with the problem of leakage through the same 
cracks. In other structural members, the possibility of interface shear trans­
fer is explicitly taken into account at the ultimate state. In this paper, the 
closure and shear behaviour of cracks in concrete structures is investigated 
by means of a coupled numerical/experimental approach. Dilatancy is con­
sidered, and the lacunar fractality of the true contact domains is evidenced. 
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1 Introduction 

The investigation on the contact effects occurring in concrete structures is 
usually restricted to very specific problems. The attention is drawn only to 
the frictional effects and, also in this respect, a modern approach is lacking. 
A clear distinction between adhesion, bond and interlock is missing. How­
ever, interface laws are used to model aggregate-mortar interfaces in con­
crete microstructural analyses, joints in dynamic analysis of arch dams 
(Hohberg, 1992), discrete cracks in fracture analysis of gravity dams (Cer-
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venka, 1994), and concrete-steel bond behavior (Cox and Herrmann, 1995) 
where, besides interlock and friction, also a chemical action is present. 

Concrete to concrete friction comes into play in many situations and 
contributes consistently to the stability of a structure. However, the effects 

friction are especially valuable in massive structures, because the fric­
tional contribution to stability is size-dependent, if dead loads are consid­
ered. Within the classical hypotheses, the frictional force Tis independent 
of the nominal contact area A,1' but depends on the true contact area AP 
which, in turn, is proportional to the normal load F (T=µF). If perfectly 
similar structures are considered, the nominal contact area scales according 
to L 2, whereas the normal loads (and the frictional force) scale proportion­
ally to the weight of the structure, that is, according to L 3. Therefore, if 
't=TIA11 is the frictional specific resistance, one obtains 't=TIA

11
-L3!L2-L. 

Hence, stability due to friction increases with the size of the structure. 
In concrete dams, because of the joints generated by a stepwise con­

struction of layered concrete blocks, and because of the strong in-service 
thermal gradients, cracks can have relevant dimensions from the beginning 
of their life (Rescher, 1990). Due to the huge masses, friction effects come 
into play. The assessment of safety under the presence of the cracks cannot 
be adequately addressed if the shear resistance of these joints is not taken 
into account. Moreover, the evaluation of leakage through the cracks 
requires the knowledge of the geometric characteristics of the contact 
domain at the concrete interfaces. 

In many concrete structures, the applied shear forces may produce 
inclined tension cracking across a member (Karihaloo, 1996). Shear forces 
may also cause a sliding type of failure along a pre-existing plane. Because 
of external tension, shrinkage, or other causes, a crack may form along 
such a plane even before shear occurs. Thus, the possibility of shear trans-

by friction arises. Earthquakes showed that construction joints in some 
members, particularly shear walls, form the weakest link in the load-resist­
ing mechanism of the structure if large shear forces need to be transmitted. 

Regarding flexural members, frictional effects in the cracks can be crit­
ical only if the span to depth ratio is very small (deep beams), or when a 
particular section, along which shear displacement can occur, is weakened 
by the formation of a tension crack. In these members, concrete friction is 
often accompanied by the dowel action of the longitudinal bars subjected 
to shear displacement. However, to develop dowel strength of some signif­
icance, very large shear displacements v are necessary. At an acceptable 
value of v, considerably larger friction stresses are generated. This is true 
unless crack opening were too large. In fact, even a small shear displace­
ment is accompanied by a normal displacement 8 of the crack faces (dila­
tancy ). The larger the crack opening 8, the larger the shear displacement v, 
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and the smaller the attainable ultimate strength. To develop an acceptable 
friction capacity, dilatancy must be limited by normal loading, provided by 
external constraints or by the steel bars. Moreover, crack dilatancy 
strongly affects the liquid flow through the interface, because the topologic 
characteristics of the contact domain considerably change during the shear 
displacement, as will be shown in the following. 

Dilatancy may also reduce the durability of a joint, for example seis­
mic areas. Under cyclic loadings, the strength of a structure is activated 
several times in alternating directions. If cracks do not appreciably open, 
no shear displacement occurs and no deterioration of the shear capacity can 
be expected after a few cycles of high-intensity loading. Instead, if cracks 
open, repeated loading will cause a deterioration of the interface rough­
ness, dislodging the embedded aggregates, with a corresponding reduction 
in the coefficient of friction. 

The evaluation of the interface shear transfer capacity Tu is based on 
the traditional theory of friction, that is, Tu is proportional to the normal 
load F by means of a friction coefficient µ. Park and Paulay (197 5) suggest 
the value µ = 1.4 for concrete cast monolithically and the value µ = 1.0 
when concrete is placed against hardened concrete. In the case of 
existing interfaces (e.g. concrete dams), shear displacements much larger 
than those encountered along initially uncracked interfaces are required to 
effectively activate friction. Moreover, the shear capacity of a joint could 
be considerably affected by surface preparation and could be less than that 
encountered along cracks formed in monolithic concrete. Hence, the use 
a lower coefficient of friction is advisable. However, adequately reinforced 
concrete joints with a clean and rough surface can develop an interface 
shear strength equal to or larger than the shear capacity of the members. 

In this paper, the closure and sliding behaviour of cracks in concrete 
structures is investigated by means of a coupled numerical/experimental 
approach. Dilatancy behaviour is highlighted, and the lacunar fractality 
the true contact domains is put into evidence. 

2 Laser-digitization of the concrete fracture surfaces 

Bone-shaped concrete specimens have been tested in uniaxial tension at 
Politecnico di Torino. After breaking the specimens, some of the fracture 
surfaces have been digitized. · The experimental equipment, extensively 
described in another paper (Carpinteri et al. 1997), consists of a laser profi­
lometer moving in the two orthogonal directions X and Y by means of two 
micrometric step-motors. At each point of a horizontal grid, with spacing 
equal to s, the laser reads the height of the corresponding surface point. A 
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limit precision of 2µm can be attained in the horizontal and vertical direc­
tions. Once the area to be scanned is defined and the required precision is 
fixed, the procedure is fully automatized. Of course, numerical simulations 
on profiles would be much easier, but it is believed that many essential fea­
tures of the contact phenomenon would be missed. 

A shaded rendering of one of these surfaces is shown in Fig. I a. The 
scanned area measures 4x4 cm2. Since the laser profilometer needs to stop 
at each point, surface acquisition can be quite slow depending on the 
required precision. Therefore, in the case of the surface shown in Fig. 1, 
the digitization interval s was set equal to 80µm. This corresponds to a 
512x512 array of digitized points. Further refinements, in the case of con­
crete, do not alter significantly the numerical simulation of contact, at least 
in the considered mesoscopk scale range. Only one side of the fracture 
was digitized, because the hypothesis of perfectly corresponding surfaces 
at the opposite sides of the fracture is implicitly assumed in the following. 

From a statistical point of view, the fracture surface can be considered 
as an invasive fractal surface (Carpinteri, 1994) with self-affine scaling 
properties (the heights scale anisotropically with respect to the horizontal 
coordinates under dilatation transformations). Application of several 
fractal tools ( Carpinteri et al., 1997) yields the fractal dimension ~ of the 
set comprised in the range 2.15 - 2.29. Note that a remarkable heterogene­
ity is present in the considered surface. For instance, pre-existing pores in 
the cement paste, debonding and cracking through the aggregates can be 
clearly evidenced in Fig. la. It can be argued that the shear behaviour is 
strongly controlled by these localized discontinuities (roughness or inter­
locking mechanism), and that adhesion is activated only in the very first 
stages of sliding. 
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Fig. 1. Shaded relief of the fracture surface (a), and delta-surface from the 
2x2 cm2 central portion shifted 8mm in the West (see Fig. 2) direction (b). 
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3 Numerical simulation of the contact process in concrete cracks 

By means of a linear elastic numerical model, the contact mechanisms 
inside concrete cracks can be modelled. The crack closure behaviour under 
normal loading, and the dilatancy effects under shear displacements can be 
investigated. Determining the points undergoing true contact at each stage 
permits to confirm the lacunar character of the contact domains and to 
study the coupled interlock-adhesion friction mechanisms. A more detailed 
description of the algorithm is given by Boni-Brunetto et al. (1998). 

A square grid of points with spacing s is introduced in the reference 
plane X- Y. Of course, s is the chosen numerical discretization and, in this 
case, corresponds to the resolution adopted in digitizing the fracture sur­
face (s=80 µm). At each node of the grid, two facing points on the opposite 
sides of the crack can touch and transmit a force. We assume that a small 
contact zone is involved around the grid point, whose area is related to the 
spacing s of the grid. Once the relative position (in the X-Y plane) between 
the initially perfectly matching surfaces is fixed, a relative closure dis­
placement w (in the Z direction) is imposed to the half-spaces. Alterna­
tively, if dilatancy is investigated, a fixed value of normal load F can be 
imposed and the value 8 of the crack opening, corresponding to each rela­
tive shear displacement v between the crack faces, is obtained (see eq. (2)). 

The solution is sought in terms of pressure and surface displacements, 
paying attention to the unilateral contact condition at the interface. The 
approximations introduced as a first approach to the problem are the fol­
lowing: (1) surface point displacements are perpendicular (Z direction) to 
the boundary mean plane of both half-spaces; (2) displacements are func­
tions only of the normal components (f) of the surface forces; (3) forces are 
related to displacements through influence functions. 

Considering a reference plane where z=O, let w be the relative normal 
displacement between two points far from the interface, assumed as posi­
tive in the closure direction. Function L1h(x, y) can be introduced, repre­
senting the difference between the heights of two corresponding points in 
the undeformed condition. This function represents a virtual invasive 
fractal surface (delta-surface, see Fig. lb) whose fractal dimension 
increases as the relative shear displacement increases, passing from the 
value 2.0 (corresponding to the flat plane obtained from the initially match­
ing faces) to a fractal value larger than 2.0 when correlations between the 
heights of the facing surfaces vanish. 

The following linear system of equations can be written: 

- w + Lih r = °""\:' H f 
2 L..,; rs s' 

s 
(1) 
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where fs is the resultant of the forces acting on the contact spot around 
point Ps and Dis the set of the points undergoing true contact. The influ­
ence terms Hrs can be evaluated by referring to the settlements induced by 
a unit load, applied to an elastic half space, through a rigid circular plate 
acting at point Ps. By solving the system of equations (1), the contact 
forces between the two bodies are determined, provided the contact 
domain Dis first determined (Dis not known a priori). The solution of this 
problem can be conveniently achieved by means of an incremental-itera­
tive algorithm (active set strategy). For any given closure displacement wi, 
an iterative procedure is started from a tentative domain Di l) through a 

. . (k+l) (k) -sequence of sets. Di c Di , k - 1, ... , m - 1 . 
At each step k, the system (1) is solved, retaining in the contact domain 

Djk+ l) only the points where compressive forces have been found (unilat­
eral contact condition). The procedure converges to the correct domain 
vvn) in a few steps, through successive eliminations of tension points. 
Once the correct solution is reached for the given increment i, the closure 
wi+I is imposed, passing to a new increment. 

With reference to Fig. 2, the simulation has been carried out by consid­
ering a 2x2 cm2 portion of crack surface, initially perfectly matching the 
opposite side. The portion can slide over the facing 4x4 cm2 surface along 
two orthogonal directions in the X-Y plane. The minimum relative shear 
displacement v is equal to one pixel, i.e. to 80 µm. The crack closure beha­
viour (F-w), for each relative horizontal position, can be obtained by apply­
ing an increasing closure displacement and computing the corresponding 
total normal force. By varying v under a constant normal force F, the crack 
opening 8 can be computed, obtaining the dilatancy curves (v-8). In all 
cases, the simulation provides the true contact domain at each step. 
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Fig. 2. Scheme of the simulation: dilatancy (8) and shear displacement (v). 

1640 



4 Lacunar contact domains, crack closure and dilatancy behaviour 

The problem of joint closure under normal loads is very important in con­
crete dams. In Fig. 3a, the crack closure curves, obtained in correspon­
dence of five different values of the relative shear displacement v (West 
direction), are shown. Let us observe that the interface closure displace­
ment wint can be estimated by subtracting, from the total displacement w, 
the part due to the linear elasticity of the half-spaces (wint = w - wb). The 
bulk contribution wb depends only on F, and can be evaluated by referring 
to classical elastic solutions. 
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Fig. 3. Crack closure laws (a), and real contact area vs. applied force (b ). 

It can be noticed that, as the shear displacement v increases, the exten­
sion of the closing stage increases, together with the interface compliance. 
This corresponds to the increase of the fractal dimension the delta-sur­
face, as shown by the results obtained with computer-generated surfaces by 
Borri-Brunetto et al. (1998). Note also that, the larger the shear displace­
ment v, the smaller the percentage of true contact area under a fixed value 
of F (Fig. 3b ). If the area of true contact is plotted versus the applied load, 
a nearly linear behaviour (Ar~F) is observed (Fig. 3b). This is in agree­
ment with early theoretical observations and with many experimental 
results (Greenwood and Williamson, 1966). However, since the euclidean 
measure of Ar is experimentally depending on the measurement precision 
(or on the numerical discretization s), the classical elastic contact theories 
do not present predictive capabilities. 

Borri-Brunetto et al. (1998) showed also that the contact domains pro­
duced by fractal interfaces are lacunar fractals, i.e., domains with Haus­
dorff dimension Ll.cr lower than 2.0. particular, Ll.cr evolves during 
loading, increasing as the normal load F increases. Starting from the value 
Ll.0 = 0.0 (corresponding to pointwise non-structured contact), Ll.cr progres­
sively increases, attaining values larger than unity as soon as linear contact 
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structures and rarefied contact islands are formed (Fig. 4). The total satura­
tion of the domain D (or, at least, of some islands) would imply .6.cr=2.0. 
This value, in real materials, can be attained only for very high normal 
loads, and this would imply the extended plasticization of the material. 
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Fig. 4. Evolution of the contact domain during crack closure for v=0.4mm 
(see the related points in Fig. 3a). 

The rigid-body dilatancy curves (corresponding to F=O) are shown in 
Fig. Sa. A marked anisotropy is revealed. In the case of the West and 
North sliding directions, the rigid dilatancy Dr immediately raises to a pla­
teau value Dr:::::2mm (corresponding to v::::0.8mm), and then remains approx­
imately constant under shear displacement. Instead, in the East and South 
directions, after a steep increasing stage, Dr continues to grow, attaining an 
oblique asymptote. A closer look to the specimen permits to assert that this 
behaviour is due to a mean slope of the digitized fracture surface. The 
elastic dilatancy D, at a fixed value of F, can be obtained by subtracting, 
from the rigid dilatancy Sr , the interface closure displacement w int: 

The initial parts (up to v:::::0.8mm in the West direction) of the elastic 
dilatancy curves obtained for three values of F (I OOON, I OOOON and 
30000N, corresponding, respectively, to the nominal pressures of 2.5MPa, 
25MPa and 75MPa), are shown in Fig. 5b. In Fig. 5, six contact domains 
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for F=30000N are also depicted. As was already observed (Fig. 3b ), the 
larger the shear displacement v between crack faces, the smaller the per­
centage of true contact area or, better, the smaller the fractal dimension of 
the contact domain. However, this is true up to a certain shear displace­
ment, after which Ar seems to remain approximately constant (see also Fig. 
3b, comparing the curves for v=0.40mm and v=0.80rnm). Note also that 
the last domain (F), Gorresponding to the delta-suiface shown in Fig. 1 b, is 
different from the others, due to the large shear displacement (8mm). No 
more correlations are present between the two facing sides of the crack. 
This suggests the existence of a threshold scale, related to a characteristic 
length of the fracture surface or to an internal length of the material. 

s 5 
s 

v::.f· 4 
>-. 
g 3 
.:s 
ro 

;;::: 2 
"O 
"O 
.@.i I. 
·i::: (a) 

s 
····E s 1.5 

s 
"° G' 1.0 

.::: 
ro 
] 
:.a 0.5 

D E 

(b) 
oc_,_~c_,_._.__._._~._._.---'-'~-'-'~-"-' 0.0 If-'-~~~~~~~~~~~ 

0 2 4 6 8 10 12 no n2 n4 n6 ns 1~ 

shear displacement v, mm shear displacement v, mm 

v=0.08mm, Ar=3.2% v=0.16mm, A,.=l.8% v=0.24mm, Ar=l.4% 

( . ' .. ( 
•• · 1 

>... '(l '. -, 
. ' 

. (' 
\ 

f 1. I I,., 

\_ 

,...,- . 
.•. (C) 

, ' ... 

v=0.40mm, Ar=l.l % v=0.80mm, Ar=l.0% v=8.0mm, Ar=l.1 % 

( ( .. 
.... 

.... 
(' ,. 

.~ .. ,;, 

•, 

\ ~ "' ' ""' ,,,,,,,. ~ 

) ; ·~ 
i 

: (D) . (E) (F) l .Ff' ,,,,, 
,. . 

Fig. 5. Rigid dilatancy curves (a), elastic dilatancy curves (West direction) 
(b), contact domains corresponding to points A-Eon the F=30000N curve. 
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In conclusion, it is worth to say that the analysis of the dilatancy curves 
allows for an estimation of the shear strength developed during sliding of 
concrete rough interfaces. In fact, as commonly assumed in rock mechan­
ics, the effective value of the friction angle can be calculated as the sum of 
a basic angle with the current dilatancy angle (e.g. Goodman, 1989). 
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