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Abstract 
This paper explains, using fracture mechanics principles, that 
common size effects observed in the fracture toughness of concrete and 
similar materials can be clarified by failures of test samples with crack 
tips close to either front or back surfaces. From the strength and 
toughness criteria a simple asymptotic function, akin to the original 
Bazant's size effect law, is acquired for edge cracks at the front surfaces. 
The key parameter used in the asymptotic function, the reference crack 
length a*, is similar to the original Hillerborg's characteristic length Ith 
introduced for concrete. The size effect due to crack tips close to the 
back surfaces is further considered by a local energy distribution 
function gf. It shows that the size effects in toughness are inevitable 
when the distance from a crack tip to either front or back surface is 
comparable to the crack-tip fracture process zone. 
Key wo~ds: Size effects, fracture toughness, crack, free edge 

1 Introduction 

The significance of size effects in concrete fracture has been well­
documented since the pioneer work of Bazant ( 1984) more than ten 
years ago. Is concrete really different to metals and ceramics as "size 
effect" is virtually never mentioned for these materials? This paper 
addresses this problem by firstly examining typical fracture 
characteristics of metals with cracks close to free surfaces, and then 
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where the geometry factor Y is a constant(= 1.12) for the case shown in 
Fig. 1, and hence the reference crack a* is a material constant 
determined solely by the fracture toughness K1c and yield strength Sy. 

Obviously, an abrupt transition from ductile to brittle failure can 
never occur. Elastic/plastic failure needs to be considered as indicated 
by the solid curve in Fig. 1 with asymptotic behaviours at two extremes: 
a<< a* and a>> a*. If a<< a*, the very short crack can be completely 
shielded by the crack-tip plastic zone or fracture process zone (FPZ) 
commonly used for concrete-like materials so that the Sy criterion 
prevails. On the other hand, if a>> a*, the crack-tip plastic zone is very 
small in comparison with the crack size and other material dimension so 
that the Krc criterion prevails. When a is around a*, elastic/plastic 
fracture occurs. 

A simple asympt"otic function has been assumed based on such 
considerations of the a/a* ratio and elastic/plastic fracture (Hu, 1998): 

s 
(J - y 

f - ..JI+a/ a* 
(2) 

It can be easily proven from Eqns (1) and (2) that Eqn (2) also satisfies 
both the Sy and Kie criteria when a<< a* and a>> a*. 

Now, let us adopt the common notations used for concrete to replace 
those parameters in Eqns (1) and (2). Eqn (1) becomes: 
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y t 
(3) 

As usual, ft is the tensile strength, Gf the specific fracture energy and E 
the Young's modulus. Eqn (3) shows that the reference crack a* 
introduced for the ductile to brittle failure transition of metals is the 
same as the characteristic length of concrete defined by Hillerborg et al 
(1976). Thus for concrete, Eqn (2) can be rewritten as: 

a·f 
(4) 

where a and ~ are dimensionless constants that depend on the geometry 
of test samples. Here, the nominal fracture strength of concrete O'N is 
used to replace the tensile failure strength of metal O'f. The parameter a 
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is introduced because O'N is not necessarily measured under pure tensile 
conditions. It can be seen that Eqn ( 4) is almost identical to the 
following size effect law for geometrically similar specimens originally 
obtained from dimensional arguments by Bazant (1984): 

A·f 
(J - t 
N- vfl+B· W 

(5) 

where A and B are constants depending on the geometry and material 
properties, and W is the specimen width or a characteristic specimen 
dimension. Obviously, a is the same as A. However, B in Eqn (5) has 
the length dimension, and it appears that the allch ratio in Eqn ( 4) has a 
similar role of W in Eqn (5). 

2. 2 Results from experiment and other model 
Now, let us see how Eqn ( 4) originated from Eqn (2) can be applied to 
concrete-like materials. Experimental results on the critical stress 
intensity factor Kc of various cement paste specimens from Higgins and 
Bailey (1976) have been studied by Cotterell and Mai (1987, 1996). For 
convenience, their results are shown in Fig. 2. 

To show the influence of small edge cracks and avoid the influence 
of the back surface, results from small aid ratios are considered only. 
Since nearly all the experimental Kc results for various d values are 
available for aid around 0.2 and it is sufficiently less than 1, the average 
experimental results at aid = 0.2 are chosen to test the validity of Eqn 
(4). As usual, the standard stress intensity factor expression should be 
used (as a has been introduced in Eqn (4) to account for different stress 
conditions): 

(6) 

size effect in the toughness Kc is determined by the nominal 
strength O'N given by Eqn (4). For a given aid ratio, a oc d, and it can be 
derived from Eqns (4) and (6) that: 

K -c- (7) 

where a 1 and ~ 1 are geometrical and material constants since the 
material constants ft and lch have been combined into them. As expected, 
Eqn (7) shows that the size effect disappears when d is very large .. And 
the true size-independent fracture toughness Krc is given by: 
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significance (7) is it can used to r1,,.t·,:.rrynr•"' 

small specimens with limited d values are 
geometrical and material constants a 1 ~ 1 are . ..-.rla1n.on.r1a.,.-.t" 

.. :,,,_,,..,...,.1..L.1..1....,·.1.JI size). Therefore, Eqn (7) not only indicates 
also gives true size-independent fracture 
results 2 and Eqn (7) are listed 
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It is even more interesting to see that Eqn (7) can 
to results for aid = 0.05 with constant 

al and results Table 1 into Eqn (8), it 
K1c = 0.65 0.62 MPa"m for aid = 0.2 and 0.05. 

Krc at 1 is .Y(0.019/0.044) = 0.66 MPa.Ym . These results are 
indeed very close, identical to the plateau toughness value of 

d 

5 
8 
14 
28 
56 
110 

very large specimens obtained by Cotterell and Mai 

of toughness Fig. 2 (all in MPa-Vm) 

aid= 0.05 
Kc (theo.) 

0.24 
0.29 
0.35 
0.43 
0.50 
0.55 

Kc theo. 
0.24 
0.29 
0.35 
0.43 
0.50 
0.55 

~--.J ..... ii .• u ...... ,, ........ results from and Bailey (1976) 
2Results from (7) with <XI = 0.027 and Pl= 0.064 

3 

""1'"h""'' results from Cotterell and Mai (1987) 
with <XI = 0.013 and = 0.034 

3. plastic 
bridging 
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Everyone knows in case fracture is ~~~ .. w·~ 
yielding even the bulk of specimen is still ......... .., . .., .. 11....,. 

criterion simply does not A energy ..., ...... ~ ........ ,,'""L ... 

"specific work fracture" ............ nc .. (Mai Cotterell 
Mai (1988)) should be used. 

The questions are: in situations can the 
used for concrete-like materials, and is 
the integral of bridging stresses 
this has seldom been questioned 

3.2 Fibre-reinforced 
For these materials, the crack-tip plastic zone is very JlLJ.JUl ................. . 

ignored in comparison the large 
crack-tip. Adopting common 
applying the K-superposition principle 
contribution Kb, one routinely obtains 

where Kie is the toughness for the .... A ............ , ... 

for K are derived for stress-free cracks, i.e. 
approaches to 0 when the crack a approaches 
that Ka(P,a) = Kie, or the toughness is ..... H ... ...,v ......... ...,...,J, .... 

length. However, LEFM not be 
instance, even if the fictitious crack tip Fig. 3 (b) is 
surface, P is still bigger zero because the V.LJ.'UF,JlL•F-, 

which makes Kb( CTb,a) -7 oo, or Ka(P,a) = KR -7 oo. 

KR does not mean more energy is ....... u • .., .... _,..4 ... .., ..... 

effects (e.g. a limited specimen width 
or when a crack approaches the back .., .... Jl .......... ,..., 

It is rational to argue that situations 
treated exactly the same, LEFM ~ ..... ·-~~ ... ~.._ ... ._,, 
either a plastic zone or a crack-bddging zone is near 
surface as the problem is no longer ..., ....... "" ... .IL'"'· 

cases similar to that in Fig. 3(b ), severe 
be observed (e.g. Cotterell Mai 

3 .2 Concrete-like 
It has been observed by 
crack is close to the back surface of a mortar specimen, 
FPZ or bridging zone is reduced. 
specimen ligament imposes a constraint on 
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bridging zone, which shows unmistakably the effect of a free edge (the 
specimen back surface). 

The fictitious crack model proposed by Hillerborg et al (1976) has 
been widely adopted for concrete fracture. The mechanism behind the 
idealised bridged crack model is that the FPZ in concrete-like materials 
has a finite width within which bridging stresses are generated through 
crack-surface interlocking and friction (e.g. Mai and Lawn (1987), Hu 
and Mai (1992)). It is possible that when the FPZ length is reduced, so 
is its width as illustrated in Fig. 4(b). The later influences the specific 
energy Gf and then the crack bridging stresses. As a result, smaller Gf 
values are obtained if cracks are too close to the back surfaces (Hu and 
Wittmann (1992)). 

Since the results from long cracks close to the back surfaces show 
the influence of a free edge (back surface), they should be similar to 
those obtained from short edge cracks showing the influence of the other 
free edge (front surface). The results in Fig. 2 show just that! 

(b) 

t (a) 

a 

x 

Fig. 4. (a) Contour of FPZ for short edge cracks and (b) contour of 
FPZ for cracks close to the free back surface. 

In order to derive the size independent Gf values for concrete-like 
materials, Hu and Wittmann ( 1992) have introduced a local energy gf 
function to account for the variation in the FPZ width. Only the normal 
Gf tests are required to determine Gf = Gf(a) as a function of the initial 
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notch length a. The local energy distribution function gf(a), as a 
function of the position parameter a, can then be determined as follows: 

(10) 

The above equation can be better understood with the sketch in Fig. 4(b ). 
For a given specimen with an initial notch length a, one measurement of 
Gf is obtained, which is the averaged value of the local energy function 
gf. Gf will vary with the notch length a because of the "size effects". By 
testing specimens with different notch lengths, the function Gf(a) is 
determined. Then gf(a), as a function of the location parameter a, can 
be evaluated from Eqn (10). The maximum gf can be taken as the size­
independent Gf value for large structures. 

4 Discussion al).d Concluding Remarks 

It is well-known that the thickness B of a metal specimen has to satisfy 
the condition, B ~ B* = 2.5(K1cfSy)2, to ensure a thickness, or size, 
independent toughness measurement. From Eqn (1), it can be obtained 
that B* = lOa* for Y 1.12. In other words, to restrict the influence of 
two free side surfaces and ensure plane strain fracture, the thickness has 
to be ten times of the ductile/brittle transition crack size a*. Similarly, if 
a/a* ~ 10, the influence of the free front surface can be neglected, as 
shown by Eqn (2). It is clear that the size effect in toughness is not 
unique to concrete. The difference is it is interpreted in terms of 
elastic/plastic fracture for metals. The key parameter for the size effects 
or fracture transition is the reference crack size a* or characteristic 
length lch· For steels, typical Kie = 60 MPa"m and Sy = 700 MPa. For 
advanced structural ceramics, e.g. alumina and zirconia, Kie = 4 
MP a" m and CT f > 1000 MP a. Using these parameters, a* has been 
calculated from Eqn (1) and listed in Table 2 together the typical lch for 
various cementitious materials. 

Table. 2 Approximate a* and lch for various materials 

fibre 
ceramic steel cement paste mortarl concrete I reinforced 

(+- a*) Och~) mortarl 
<4µm 2mm lOmm 90mm 200mm >2000mm 

1 After Cotterell and Mai ( 1996) 
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It is self-evident that because of the extremely small a*, surface 
polishing is important for ceramics to avoid cracking due to surface 
scratches. Since the inherent processing defects in ceramics are 
normally bigger than 4 µm, fracture of ceramics is always controlled by 
the Krc criterion. However, due to the size variation in their inherent 
defects, the strengths of ceramics become size-dependent. Steels seldom 
contain any processing defects bigger than 2 mm so that normal tensile 
failure is always controlled by the Sy criterion. For an artificial crack 
shorter than 20 mm, elastic/plastic fracture, or free edge or size effects, 
is observed. For steels, specimens with the width of 50 mm or bigger 
are often used to determine Krc. That would transfer to concrete 
specimens of 5 m! Therefore, size effects will always be observed in 
laboratory, and Eqn (7) derived from Eqn (2) or (4) will always have a 
special role in applications of fracture mechanics to concrete. 
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