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Abstract

The idea that the diagonal shear failure of reinforced concrete beams
without or with stirrups exhibits a strong non-statistical size effect
has been generally accepted in the fracture research community since
the 1980’s and during the last few years is gaining ground among
design eng1nee1s as new evidence from properly scaled tests of large
beams is emerging. Several competing theories to explain this size
effect have been advanced. After mentioning the problems with some
theories, the paper reviews the energetic theory of size effect and
its recent application to the classical truss model (or strut-and-tie
model). The formulae previously derived by energy analysis of the
fracturing truss model are compared with numerous test data avail-
able in the literature, and a good agreement is demonstrated.
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1 Introduction and Overview of Current Status

The diagonal shear 1s a quintessential type of brittle failure of rein-
forced concrete beams, which has been extensively tested over the last
fifty years in several hundred laboratories around the world (Bazant
and Kim 1984, Bazant and Sun 1987), with a total expenditure that
must have exceeded five hundred million in current dollars. Great
advances of understanding have been achieved and incorporated in
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the design codes.

However, one salient feature—the size effect—received relatively
little attention in this experimental research, perhaps because of over-
confidence in the plastic limit state theory which implies no size effect,
and because of the conviction (today known erroneous) that any size
effect must be statistical in nature. Among about five hundred data
sets available in the literature, only about twenty explored the size
effect and, unfortunately, strict geometric scaling has not been fol-
lowed until very recently, making separation of the size effect from
other influences ambiguous. Thus it is not surprising that the size
effect is still either ignored in the code specifications (as in ACI) or
is dealt with in a questionable manner (as in CEB and JSCE).

There has nevertheless been a major positive change in attitude
in regard to size effect during the last several years. Not only the re-
search community in concrete fracture but also many engineers in the
code-making committees world-wide came to agree that a significant
(non-statistical) size effect does exist, that there is credible and ex-
tensive experimental evidence for it. Currently a wide-spread feeling
that the size effect ought to be somehow reflected in code specifica-
tions has emerged. The question no longer is if, but how. But in that
respect there is, unfortunately, little agreement.

The code specification in Japan, calibrated by the largest-scale
tests ever made (Shioya et al. 1989), follow the most classical theory
of size effect—the statistical theory of strength randomness originated
by Mariotte (1686) and theoretically completed by Weibull (1939).
However, whereas this theory has been very successful for fatigue-
embrittled metals, its assumptions are not valid for reinforced con-
crete, for several reasons (the fact that the structure fails only after
a large stable crack growth, the fact that concrete is a material pos-
sessing a ‘material length’, etc.; Bazant and Chen 1997, Bazant and
Planas 1998).

The current CEB specification use a formula identical the so-called
‘multifractal’ scaling law proposed by Carpinteri on the basis of his
idea that the size effects observed in experiments should be explained
by the fractal nature of crack surface roughness and of microcrack dis-
tribution. However, this original and revolutionizing idea has been
supported only by vague arguments which have been solely geometric
in nature, while recent mechanical analysis of Bazant (1997b) reveals
inconsistencies, leading to the conclusion that the hypothesis of frac-
tality as a source of size effect cannot be valid. '

Among several other proposals, one that is being advocated for
ACI code specifications is that of Collins et al. (1996), which at-
tempts to explain the size effect by a dependence of the width of
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diagonal cracks on the beam size. Yet this theory, too, runs into
serious problems (Bazant 1997a).

The objectives of the present paper are (1) to briefly review the
theory that explains the size effect in diagonal shear failure by energy
release into a localized and propagating failure zone (Bazant and Kim
1984, Bazant and Sun 1987, Bazant 1997a), and (2) to present exper-
- imental evidence for this theory. This energetic theory of quasibrittle
size effect, initiated by Bazant (1976, 1984) and based on a consistent
theoretical framework, has had considerable success for many types
of quasibrittle failures, not only for concrete but also for rocks, com-
posites, ice and ceramics, and so far has not into any unanswerable
fundamental theoretical problems (Bazant and Planas 1998).

Although generalization would be easy, attention will be restricted
to rectangular cross sections because only for those there is extensive
experimental evidence. The nominal shear strength of the beam is
defined as v, = V,/bd where V,, is the shear force at ultimate load,
b and d are the beam width and depth (from top face to centroid of
longitudinal steel bars). The study deals with a simply supported
beam with two symmetric concentrated loads P, for which the shear
span a is defined as the distance between the load and the support
reaction.

2 Energetic Size Effect in Fracturing Truss Model

The latest version of the energetic theory of size effect in diagonal
shear represents an extension of the classical truss model (also called
the strut-and-tie model). The diagonal shear failure begins by for-
mation of inclined tensile cracks in concrete. These cracks, however,
develop before the maximum load and do not control the value of
maximum load (i.e. do not control failure, or stability loss, under
dead load). It is assumed that the diagonal shear crack at maxi-
mum load have the principal stress direction, and that the principal
tensile stresses (cohesive stresses) bridging the diagonal shear cracks
at maximum load are negligible compared to the compressive prin-
cipal stresses parallel to cracks carried by the so-called ‘compression
struts’.

Assuming the reinforcement to be designed strong enough, the
truss can fail only in the compression strut. So the failure necessarily
starts as a compression failure (although, during post-peak deflec-
tions, it may evolve into what looks at the end as a shear failure).
The classical plastic limit analysis could be valid only if the compres-
sion strut failed simultaneously everywhere (and if the load-deflection
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Fig. 1 Energy release zone in similar beams of various sizes.

diagram exhibited a horizontal yield plateau). But this is not the
case.

Owing to the strain-softening character of concrete, the material
failure must concentrate into a small zone within the strut (e.g., zone
12341 in Fig. 1) and must propagate across the cross section of the
strut. At maximum load the failure zone crosses only a part (of
length ¢) of the compression strut width. Such a kind of propagating
(progressive) failure necessitates energy analysis, which calls for the
use of fracture mechanics.

The necessity of an energetic size effect can be made clear by Fig.
1 even without any calculations. Compression of the strut produces
axial splitting cracks (with material buckling) with zone 12341 whose
depth 1’ is essentially a material property governed by the maximum
aggregate size (that the zone is pictured at the top of the strut and
that it propagates horizontally is unimportant; if it were located else-
where and propagated vertically or in an inclined direction, the con-
clusions would be similar). Formation of this failure zone reduces
the stress in the blank strip 12561 extending (because of preexisting
diagonal cracks) over the whole length of the strut. When the beam
is scaled, the width of this strip is scaled in the same proportion, and
since the energy release is proportional to area 12561 of the strip, it is
proportional to the beam size squared, or to v2d?. On the other hand,
the energy consumed by the formation of the axial splitting cracks
in the compression failure zone is proportional to the area h'd of this
zone (zone 12341), which is proportional to d rather than d?. The
- mismatch—the energy release increasing with the size as d> and the
energy consumed increasing as d—must obviously cause size effect.

Even if the other competing theories of size effect have some merit
(which they might), they cannot ignore this energetic source of size
effect, which operates inevitably. They would have to be regarded as
a secondary source of size effect, additional to the energetic one.

It is important to realize that there s no limit state (Bazant and
Kim 1984), i.e., a state at which the material strength would be mobi-
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lized simultaneously along the entire failure surface corresponding to
a strictly kinematic failure mechanism, which is the central hypothe-
sis of plastic limit analysis underlying the current code specifications.
A kinematic failure mechanism, seen at the end of laboratory tests,
develops only in the post-peak softening regime, after the load has
been reduced to a small value.

Since the failure band width is roughly size independent, it be-
comes more localized relatively to the beam size if the beam is larger,
and less localized if it is smaller. For very small sizes, the failure zone
in the compression strut occupies nearly the beam depth, and in that
case the material strength is mobilized almost simultaneously over the
entire failure surface. That is why the test results for small beams
seem to follow plastic limit analysis relatively well and do not reveal
appreciable size effect.

3 Size Effect in Reinforced Beams Without Stir-
rups

The energy analysis of the truss model (Fig. 2) has led to the formula
(Egs. 9-11 in Bazant 1997):

d —1/2
Uy = Up (1 + %) (1)
where 1
d a d\~
do = U)Q—C—) Uy = CpI&c (8 + 5) (2)
- 2]10 c/d
K. =+/E.Gy; - =k -
' f K wosea/d (3)

Here ¢ = length of the compression failure band at maximum load,
which may be considered to be roughly proportional to the beam
depth; Gy, K., E = fracture energy, fracture toughness and Young’s
modulus of concrete; hg = maximum failure band width (or length
of compression splitting cracks), s, = typical spacing of the splitting
cracks; and wy = positive constant. Eq. (1) coincides with that
proposed without recourse to the truss model by Bazant and Kim
(1984) and has the usual form of the size effect law.

Eq. (1) has been fitted to the test data of Leonhardt and Walther
(1962), Riisch et al. (1962), Kani (1967), Bahl (1968), Taylor (1972),
Chana (1981), Bajant and Kazemi (1991), Shioya et al. (1989)

Y

2067



Walraven (1978), and Walraven and Lehwalter (1994), and Kim and
Park’s data (1994). The values of parameters dy and v, were opti-
mized for each of these data by optimum fitting in the plot of logw,
versus log d. This has been done by means of he standard library sub-
routine for Levenberg-Marquardt nonlinear optimization algorithm.

An alternative way to fit the data and optimize the values of pa-
rameters dy and vy, is to convert Eq. (1) to a linear regression equation
Y = AX 4 C in which

X=1/d, Y=1/Z A=C/dy, C=1/v’ (4)

The linear regression with uniform data weights, however, implies
a different weighting of the data than the nonlinear optimization in
the aforementioned doubly logarithmic plot. The weighting of the
latter is more realistic, for good reasons (see Sec. 6.3.6 in Bazant and
Planas 1998).

On the other hand, linear regression plots are most suitable for
visual evaluation, and are therefore used for presenting the optimum
fits of the data in Figs. 2 and 3. However, the optimum values of d;
and v, shown in each figure have been obtained by nonlinear regres-
sion in the doubly logarithmic plot. The agreement with the energetic
theory of size effect seen in the plots is quite satisfactory, especially
for the data of Leonhardt and Walther, Bazant and Kazemi, Shioya
et al., Walraven, Walraven and Lehwalter.

Fig. 4 shows all the data sets put together in a doubly logarith-
mic size effect plot in relative coordinates, taken as the relative shear
stress at ultimate load (v, /v,) versus the relative depth of the beam
d/dy, where v, and dy have.the values obtained by nonlinear opti-
mization of the each data set separately. If there were no scatter and
the energetic theory were perfect, all the data points would have to
lie in this plot on one curve, and so the deviation from the size effect
curve shows the errors. The plot in Fig. 4 shows the overall scatter
under the assumption that the correct parameter values are know,

e., it shows how good is the form of the formula but not how good
are its parameter values. But it cannot be regarded as a validation of
the size effect theory because the different data sets were put together
by using the theory. The validation depends on the aggregate of all

individual data fits (Figs. 2 and 3).
The problem of prediction of parameters dp and v, from the strength

composition, maximum aggregate size, fracture energy (or tough-
ness), effective fracture process zone length, characteristic length of
concrete, etc., is theoretically formidable. Empirical rules will have
to be developed.

Eq. (1) was derived by Bazant (1997a) under the assumption that
the stress transmitted across the compression failure band is vanish-
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Fig. 2 Beams without stirrups: linear regression fits of test
data by various investigators.
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Fig. 3 Beams without stirrups: linear regression fits of further
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Fig. 5 Beams with stirrups: comparison of Kim and Park’s
data with BaZant's size effect law.
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ingly small. This assumption is on the safe side, however, a study
of compression failure in general (Bazant and Xiang 1997) indicates
that, at maximum load, this stress might have a significant value o,
even in absence of stirrups. In that case, an analysis of the type
presented in Bazant (1997a) leads to an extended formula ‘

d —-1/2
Uy = Up (1 + d—o) + vy (5)

in which v, is a non-zero residual strength. The question whether o,
and thus also v,, can have non-negligible values in a beam without
stirrups needs to be settled in future research.

4 Size Effect in Reinforced Beams With Stirrups

We study only the usual case when the stirrups are uniformly and
densely distributed. Because the stirrups help to confine concrete,
it is now logical and safe to assume that the stress o, transmitted
across the compression failure band has a non-negligible value. The
energy analysis of the failure of the compression strut in the truss
model (Eq. 21-23 in Bazant 1997a) leads to the same formula as Eq.
(5) but with different expressions for the coefficients:

do = IUog (6)
C

. sin 26 ) N ho c
Uy = 5 or; v = K\ 25, ,/dsm 26 (7)

Here 6 is angle of inclination of the compression strut from the hori- -
zontal, which may be determined from the strain compatibility con-
dition of the classical truss model (Collins 1978).

Unfortunately, only very few data showing size effect are available
in the literature, for the case of beams with stirrup reinforcement.
Only Walraven and Lehwalter’s data (1994) are sufficiently relevant
to the size effect. These data have been fitted using the Levenberg-
Marquardt nonlinear optimization algorithm. Fig. 5 shows the linear
regression plot of these data, with d as the coordinate and 1/(v, —v,)?
as the ordinate. The optimum values of the parameters are given in

the figure.
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Conclusion

The size effect formula obtained from the energetic fracturing truss
model agrees quite well with the available test data for beams both
without and with stirrups. For beams with stirrups, however, more
extensive experimental validation is needed.
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