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ABSTRACT: : In this paper we describe the role of fluids in the mechanical behaviour of non-linear elastic 
hysteretic materials. Experiments show that the non-linear quasi-static and dynamic material behaviour pri­
marily changes in the range of low saturation, where high fluid-solid interaction forces are present. Using the 
Preisach-Mayergoyz space (P-M space) model, we show that micro- to mesoscopic hysteretic entities, that 
cause the non-linear response, are activated with increasing saturation. The description introduces different 
macroscopic interaction pressures for the reversible and hysteretic elements and provides quantitative agree­
ment with experiment This allows us to delineate populations of mechanical elements, where moisture in­
duced activation is most pronounced and to correlate the observations in perspective of the material composi­
tion. 

1 INTRODUCTION 

Much is known about the qualitative and quantita­
tive non-linear elastic response of heterogeneous 
media, such as concrete, rock and other porous ma­
terials (Guyer & Johnson 1999). The most funda­
mental observation of non-linear elastic behaviour 
comes from quasi-static tests of stress versus strain. 
Primary characteristics of nonlinearity are: stress­
dependence of the quasi-static modulus, hysteresis 
(dependence on stress history) and discrete memory 
(memory of previous maximum strain state). Also in 
dynamic experiments, the non-linear behaviour is 
found to manifest itself in a variety of manners, in­
cluding stress-dependence of the dynamic modulus, 
amplitude dependent attenuation and resonance fre­
quency shift when increasing the amplitude, har­
monic amplitudes (generation and amplitude de­
pendence of second and third harmonics), frequency 
mixing and slow dynamics (variation of modulus 
during wave excitation). Observation of these ef­
fects indicates the material is behaving nonlinearly. 

As the mechanisms of non-linear response in 
hysteretic materials are not well understood yet, 
phenomenological models have been appealed to. A 
sophisticated model called Preisach-Mayergoyz 
space (P-M space) model (Preisach 1935, Mayer­
goyz 1985), that successfully describes hysteretic 
non-linear behaviour of rock elasticity with discrete 
memory, was developed in a series of papers 
(McCall & Guyer 1994, Guyer et al. 1995, McCall 
& Guyer 1996, Guyer et al. 1997). Basis of the 
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model is the experimental evidence that non-linear 
response originates within the "bond system" of the 
material, that includes micro-cracks, intergrain con­
tacts, asperities, dislocations, etc. Origin, shape and 
behaviour of the mechanical elements may be di­
verse and the scale can vary from nano- to macro­
scopic scale. The P-M space model is based on as­
suming that the elastic properties of the material 
result from the integral response of a large number 
of such mechanical elements. Each element may or 
may not demonstrate hysteretic behaviour. The indi­
vidual elements are combined for analysis for what 
is known as P-M space. 

Recently it has become clear that fluids signifi­
cantly influence the non-linear response in porous 
materials due to the activation of internal molecular 
forces (Bourbie et al. 1986, Zinszner et al. 1997, 
Van Den Abeele et al. in press). The increased fluid­
solid matrix interaction upon wetting causes the 
material to soften and to swell. Simultaneously, the 
strength of the material reduces and the non-linear 
hysteretic effects increase significantly. With respect 
to the latter observation, it has been shown that the 
non-linear quasi-static and dynamic material behav­
iour primarily changes in the range of low satura­
tion, which implies that the presence of moisture 
plays a major role in the non-linear mechanism, or in 
the activation of that mechanism (Van Den Abeele 
et al. in press) 

Purpose of this paper is to understand in greater 
detail the role of fluids in the non-linear response of 
hysteretic elastic materials. Detailed analysis of the 



effects of moisture on the non-linear response may 
tell us more about the nature of nonlinearity and ex­
plain the role of fluids in a porous medium. The rock 
sample in this study is Berea sandstone. First, we 
will illustrate quasi-static and dynamic elastic prop­
erties in the range of 0.1 % to +99% water saturation. 
We will also show evidence from pressure vessel 
resonance tests taken at near zero and near 100% 
water saturation. In a second section, we present the 
P-M space construct for tracking the non-linear be­
haviour of rock at a particular saturation level. The 
important physical quantity in this description is the 
density distribution p of the mechanical elements in 
P-M space. We show how p is easily found com­
bining quasi-static and dynamic results. In part 4, 
we focus on a combined theoretical and experimen­
tal prediction of the fluid-solid interaction forces that 
are involved in the saturation process. To this extent, 
we define macroscopic interaction pressures, which 
express the moisture effect on the density distribu­
tion p. The description provides quantitative agree­
ment with experiment. This allows us to delineate 
populations of mechanical elements where the 
moisture-induced activation is most pronounced. As 
a final topic in the discussion, we put the observa­
tions in perspective of the material composition of 
Berea sandstone and try to identify the physical ori­
gin of the mechanical elements. 

2 EXPERIMENTAL OBSERVATIONS 

In this section, we report on the experiments at vari­
ous saturation levels. Two types of experiments are 
performed: quasi-static and dynamic experiments. 

The quasi-static experiments consist of uniaxial 
compressive tests on cylindrical samples at different 
degrees of saturation (S). The external pressure (a) 
was raised to a predetermined maximum pressure 
( a=20 MPa) and then lowered again to zero pres­
sure. This pressure control was repeated several 
times until a stable hysteresis loop was attained. The 
stable hysteretic loops are shown in Figure la for 
different degrees of saturation. With increasing de­
gree of saturation the hysteresis loops extend attain­
ing higher maximal strain levels. Extent of hystere­
sis, characterised by the internal surface of the loop, 
increases with degree of saturation. The maximal 
strain attained in a hysteresis loop as a function of 
degree saturation is given in Figure lb. We observe 
an initial sharp increase in the maximal strain with 
water saturation. The maximal strain changes very 
little beyond approximately 10-15% saturation. The 
static modulus Es1a1( a,S)= <Ja/()c, as a function of the 
stress for S=l00% is given in Figure le. The 
modulus-stress curves for decreasing and increasing 
stress cross at low stress. The modulus is discon­
tinuous at the end points of the hysteresis loop. 
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The dynamic behaviour is studied as a function of 
the degree of saturation (S) and external pressure 
(a). We use the impact resonance method on cylin­
drical samples for extracting the dynamic behaviour 
at zero pressure (a=O) (Van Den Abeele et al. in 
press). Measurements were taken at numerous water 
saturation levels between approximately 0.1-99%. 
The dynamic modulus Edyn( a=O;S) is calculated 
from the resonance frequency peak and the meas­
ured density at each saturation level. Between 0 and 
20% saturation, we see a large change in dynamic 
modulus (Figure ld). The modulus changes very lit­
tle beyond approximately 20-25% saturation. 

The dynamic measurements as function of the 
confinement pressure were made in a pressure vessel 
at two saturation states (nearly dry and fully satu­
rated), using the resonance method as well (Zinszner 
et al. 1997). These experiments are referred to as 
pressure vessel resonance experiments. In the ex­
periments the fluid pressure was kept at the refer­
ence atmospheric pressure. The dynamic modulus 
Edyn(<T,S) (S being a constant saturation value) is 
calculated from the measured velocity and density. 
The dynamic modulus in dry and saturated Meule 
sandstone (a sandstone with the same composition 
and mechanical behaviour as Berea sandstone, Van 
Den Abeele et al. in press) as function of external 
stress is illustrated in Figure 1 e. The results show 
that the material behaves more nonlinearly at full 
saturation ( 44% change in the 0-40 MPa pressure 
range versus 24% for dry conditions). From Figures 
ld-e, we conclude that the dynamic modulus 
Edyn(<T,S) is a highly non-linear function of external 
pressure as well of degree of saturation. Edyn( <T,S) 
ranges from 3 800 MP a at a=O and S= 100% towards 
± 25500 MPa for a~oo and S=O. In Figure 1 c, we 
compare the static and dynamic modulus at full satu­
ration (S=l00%). The dynamic modulus is larger 
than the static modulus. Note that at stress reversal 
points (maximum/zero stress), the dynamic and 
static modulus (in decreasing/increasing regime) ap­
proach to each other. 

Significant observations from all these experi­
ments are: (1) the stress-strain behaviour and the 
static and dynamic moduli are non-linear functions 
of stress; the dynamic modulus is larger than the 
static modulus; (2) hysteresis is characteristic of 
rocks; (3) the non-linear response of the rock sam­
ples changes significantly with saturation, in par­
ticular between 0% and 10-25% water saturation; the 
material softens and becomes more hysteretic with 
increasing water saturation. 
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3 P-M SPACE MODEL AT CONSTANT 
SATURATION LEVEL 

3.1 Ingredients 
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The fundamental reason for the hysteretic non­
linear elastic behaviour is that rocks like Berea sand­
stone contain an enormous number of micro-, meso­
or macroscopic structural features such as mi­
crocracks, macrocracks, joints, grain to grain con­
tacts, etc. Each of these elastic units may or may not 
exhibit a hysteretic stress-strain behaviour. The as­
semblage of elements dominates the macroscopic 
material response, making these materials more 
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Figure 1. Experimental results in quasi-static and dynamic 
loading. (a). Quasi-static stress-strain curves for Berea sand­
stone for several degrees of saturation. The dots represent ex­
perimental data. The solid curve represents the P-M space 
simulation. (b). Strain at maximal stress (o=20 MPa) as func­
tion of saturation obtained from the data in la. The dots repre­
sent experimental data. The solid curve represents the P-M 
space simulation. (c). The static modulus for increasing stress 
(open circles) and decreasing stress (so lid circles) at full satu­
ration (S=100%) %. The dynamic modulus as function of the 
stress at full saturation is larger than the static modulus. ( d). 
Impact resonance results: the dynamic modulus at zero stress 
as a function of saturation. The dots represent experimental 
data. The solid curve represents the fitted curve according to 
equation 14. (e). The dynamic modulus for Meule sandstone as 
function of the stress for dry (open circles) and fully saturated 
(solid circles) condition. The dots represent experimental data. 
The solid curve represents the fitted curve according to equa­
tions 9 for S= 100 % and equation 13 for S=O%. 

compressible than atomic elastic materials, and 
leading, in some manner or another to a larger non­
linear response. 

Based on the work of Preisach and Mayergoyz 
(Preisach 1935, Mayergoyz 1985), a phenomenol­
ogical model has been developed to describe the 
hysteretic non-linear elastic response of rock 
(McCall & Guyer 1994, Guyer et al. 1995, McCall 
& Guyer 1996, Guyer et al. 1997). In this phenome­
nological material model, also called the P-M space 
model, the material is represented by an assemblage 
of elastic elements that behave hysteretic as function 
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Figure 2 (a) Hysteretic Elastic Unit (HEU) in length-pressure 
space. (b). Typical PM-space representing the density of 
HEU's in a rock sample. Evolution from zero stress (point 0) to 
stress A produces the increasing branch of the stress-strain 
loop. All HEU's in the triangle OAA' are closed at the pressure 
A. Following the pressure from the maximum stress B back to 
the stress C, we see that all the HEU's in the triangle BCC' are 
closed and the decreasing branch of the stress-strain loop is 
predicted. In a dynamic experiment, e.g. sinusoidal cycling 
between a D - Lla and a D + Lla ( CJn being the ambient 
external stress, and !la the maximum stress excursion), one 
samples only a small triangle in P-M space at the point D. 

of the applied stress. A single HEU (Hysteretic 
Elastic Unit) can only exist in one of two states, 
open or closed (Figure 2a). The behaviour of a HEU 
is such that it is originally open with length L 0 , 

closes to obtain the length Le as the stress increases 
to ac, and remains closed as the stress continues to 
increase. When the stress is decreased, the element 
opens at ao, which can be different from ac, return­
ing to its original length L 0 • A large number of HEU 
elements with differing ( ac, a0 ) and (Lc,Lo) parame­
ters provides a signature for heterogeneous porous 
material (which depends on the state of saturation 
and on the degree of damage of the material). We 
assume that the different HEU's behave independent 
of each other. A further simplification is made by 
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taking the strain y= (Lo-Lc)ILo upon opening or 
closing of a HEU to be the same for all elements, or, 
y is constant. Assuming y=(Lo-Lc)ILo to be constant 
for all HEU's, the elements differ from another only 
because of the stress pair ( ac, ao). The stresses ac 
and a0 for each element can be used as the element's 
co-ordinates in "P-M space", with ao~ac. The den­
sity of HEU's in P-M space at constant saturation 
Sis given as p( ac, ao; S ). An academic example is 
shown in Figure 2b. Reversible elements reside on 
the diagonal of the ac-ao space and are described by 
the density distribution pd( ac=ao; S) ( d = diagonal). 
Hysteretic elements fill the space ao < ac. The den­
sity distribution of the hysteretic or off-diagonal 
elements Po( ac,ao; S) ( o = off diagonal) is also 
called the background of the P-M space. For the P­
M space density distribution p at a given saturation 
S we take 

p(ac,a0 ;S) = pd(ac,a 0 ;S)o(ac -a 0 ) + 
p 0 (ac,ao ;S) 

(1) 

where 8 is the delta-function. As the stress on the 
rock is varied, one can use P-M space to keep track 
of which elements are open and which are closed, 
and simulate the stress-strain response of the rock. 

3.2 Identification of the P-M space density 
distribution 

The diagonal density distribution Pd and back­
ground density distribution Po at constant saturation 
S are determined from dynamic and quasi-static 
experimental data. In a dynamic experiment, e.g. si­
nusoidal cycling between (} - !la and a+ !la (a 
being the ambient external stress, and !la the 
maximum stress excursion), one samples only a 
small triangle in P-M space (triangle at stress D in 
Figure 2b). The dynamic properties of a material can 
be probed by studying the density within the triangle 
(Guyer et al. 1995, McCall and Guyer 1994; Van 
Den Abeele et al.1997). Elements outside this "acti­
vation triangle" are left untouched. A quasi­
analytical treatment of P-M space reveals that the 
elements on the diagonal ( ac=ao) control the dy­
namic modulus Edyn( a; S) of the material 

(2) 

The more elements on the diagonal, the softer the 
material (decrease of dynamic modulus). According 
to equation 2, the density distribution of reversible 
elements on the diagonal pd( a; S) at a given degree 
of saturation Scan be determined from the dynamic 
modulus Edyn( a; S) determined in pressure vessel 
experiments. The experimental data Edyn( a; S) are 



fitted in an analytical form by a sum of exponential 
functions 

E dyn (er; S) = E dyn ( oo' S) -
nd 

I ad; (S) exp(- b di (S) er) 
(3) 

i=l 

where Edyn( 00, S) is the limit for er-700. 
The density distribution of the off-diagonal or 

hysteretic elements Pa( ere, era; S ), also called back­
ground of the P-M space, determines the amount of 
hysteretic nonlinearity: the more elements off the di­
agonal, the larger the nonlinearity and the hysteresis. 
As most of the elements are situated near the diago­
nal in PM-space (Guyer et al. 1997), it is plausible to 
assume that the density of elements in the back­
ground decreases as one goes away from the diago­
nal. Let us adopt an exponential decay (Guyer et al. 
1997) 

P0 (erc,er 0 ;S) = Pn(er0 ;S) exp(-K(erc -erJ) (4) 

where PB( cr; S) is referred to as the "basic" back­
ground density function and K a decay parameter to 
be determined. The basic background density func­
tion is determined from quasi-static er-£ data. Let 
t:i.s/ be the strain difference between the pressures 
erk-land erk (where erk= kt:i.er, ermax=nkl!:i.er) determined 
from the experimental er-£ data as the pressure in­
creases q:). Using the PM-model, the strain incre­
ment f:i.ek is given by 

(5) 

The parameter y can be seen as a scaling constant of 
the strain field, and ywill inherently be incorporated 
in function parameters describing the density distri­
butions of the PM-space. So, we assume y = 1 
meaning y can be omitted in equations 2 and 5. 

To determine PB(cr;S), we first assume the basic 
background density to be constant in the pressure 
range erk-1 - erk 

k=l, ... nk(6) 

where <Jk =U.5 (erk-I +erk). Then, it can be shown 
thatPn.kterk;.)) is given by 

<h 

!!:i.e] - J Pd(erJderc 

Tln,k(<Jk;S) = t:i.er + exp(-~~k)-exp(-Kerk_1 ) 
l( 1(2 

(7) 

The integral in the numerator is numerically solved 
using quadrature formulas. The nk values of p n at 
the pressures <Jk are then used to approximate 
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p n (er; S) in an analytical form by a sum of expo­
nential functions 

p8 (er;S) = ~:an;(S) exp(-b8;(S)er) (8) 
i=l 

3.3 Example 

We now apply the presented identification method to 
the experimental data at full saturation, S = 100%. 
The following steps are followed: 
1. We first fit the dynamic modulus data, 
Edyn(er,S =100%), of Figure le using equation (3). 
Two exponential functions were used (nc1 = 2). The 
dynamic modulus Ec1y11(cr;lOO%) is thus given by 

E<o/n (er;lOO) = E<o/n ( 00;100) 

-ad1(lOO) exp(-bd1(100)er) (9) 

- ad2 (100) exp(-bc12 (1 OO)er) 

2. For a chosen value of K, we determine, using 
equation (6), discrete values of the basic backgro~nd 
density p n from measured strain increments t:i.sk at 
20 pressure increments (t:i.a=l Mpa) of the ascending 
branch of the stress-strain loop. The obtained values 
p n,k ta k; .)) are fitted using equation (8). 
3. We calculate the descending branch of the stress­
strain loop. Using an optimisation procedure the 
value for K is adjusted. 
4. Steps 2 to 3 are repeated until the simulated and 
measured descending branch correspond. 
Using the obtained density distributions, we simulate 
with the P-M space model the stress-strain curve for 
S = 100%, as shown in Figure 3. Comparison of ex­
periment and simulation indicates the P-M space 
model is able to describe the non-linear response at 
constant saturation level. 

4 MODELLING MOISTURE EFFECTS 

4.1 Moisture induced microstresses and 
macroscopic modelling 

Because rocks are hydrophilic materials and 
contain a huge specific (internal) surface area due to 
pore space, they exhibit intense fluid-solid interac­
tions because of molecular and surface forces. The 
induced forces are known to be extremely sensitive 
to fluid saturation level. Solid-fluid interactions in­
clude molecular adsorption forces along pore walls, 
capillary pressures in capillary pores, interlayer fluid 
pressures due to the presence of interlayer hydrate 
water in nanopores. At low water saturation the mi­
croscopic fluid-solid interactions result in a com­
pressive prestressing of the solid. As saturation in­
creases, the compressive microstresses decrease, 
leading to an expansion of the material. Due to this 



expansion, the dynamic mobility of the material's 
structural entities increases with saturation, and a re­
duction of the stiffness is expected. At the same time 
the number of elements and their ability to change 
states (contact - no contact; open-close; pin-unpin) 
increases with the degree of saturation. Therefore, an 
increase of non-linear elastic effects is expected at 
low saturation (<10-20%). At larger saturation 
(>20%), the effect of the microstresses levels off. In 
the following, we introduce a macroscopic interac­
tion pressure n(S) (taking compressive stress as 
positive), which can be considered to be representa­
tive of the combined effects of all complex fluid­
solid interaction forces. 

4.2 Modelling moisture influence on dynamic 
modulus and diagonal P-M density distribution 

Let us denote the macroscopic interaction pressure, 
representing moisture induced microstresses causing 
the change of the dynamic modulus upon changes in 
saturation, as nd(_S) (d meaning diagonal) . We refer 
to ni,S) as diagonal interaction pressure, since we 
now that the reversible elements on the diagonal 
only control the dynamic modulus. We define a 
function/ such that 

1 
Edyn(a;S)= =f(a+nd(S)) (10) 

YPt1(a;S) 

Taking full saturation as zero reference state 
(nJ.100)=0), we find according to equation (9) 

f(a) = Edyn (a;lOO) = Edyn ( oo;lOO) 

- a"1 (100) exp(-b"1 (1 OO)a) (11) 

- ac12 (100) exp(-b<12 (1 OO)a) 

At dry state, equation ( 10) yields 

Edyn (a;O) = f(a + n,, (0)) (12) 

The value nci(O) can be seen as a shift of the function 
j( a) towards a higher (external) stress range and can 
be determined by fitting the pressure vessel reso­
nance data Ec1y11(a;O) (see Figure le). We found that 
a best fit was obtained by only shifting the first ex­
ponential function in equation (11 ). The general ex­
pression for E(1y11( a;S) then becomes 

E,0m(a;S) = E,0'11(oo;100) 

a"1 exp(-b,11 (a+n"(S))-a"2 exp(-b"2a) 
(13) 

where we used a(u(lOO)= ad;, b(u(lOO) = bd;. The di­
agonal density distribution can easily found using 
equation (10). 

We still have to identify the interaction pressure 
nd(_S). In order to derive an expression for n,i(S), we 
use the impact resonance data Edyn(O;S) for different 
degrees of saturation at zero pressure (a=O) (see 
Figures ld). To do so, we first fit the experimental 
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impact resonance data Edyn(O;S) by an exponential 
expression 

E,&n(O;S) = E,&n(O;lOO) + 

(E,0,
11 

(O;O) - E,0,n (O;l 00)) exp(-b8 S) 
(14) 

The fitting parameters are summarised in Table 1. 
According to equations (13) and (14), we can write 
for E(1y11(0;S) at zero pressure as a function of S 

E,0,,, (O;S) = Et1yn (O;l 00) 

+ (E,0,,, (O;O) - E,0.
11 

(0;100)) exp(-b8 S) (15) 

= E,,y
11

( 00;100)- ad1 exp(-bd1nAS))-a,,2 

which leads to the following expression for n(l(S) 

nd(S) = 
1 ( (E,0,,, (O;O) - E,0,11 ( O;l 00) )exp( -b8 S) ) 

--In 1 
bt11 a<11 

,,,, (E,0,11 (0;0)- E,,>'11 (O;l00) )exp(-b8 S) 

(16) 

We note that the function nd(_S), has approximately 
an exponential shape with the same decay constant 
(bs) as for the exponential dependence of the dy­
namic modulus on the saturation, Edyn(O;S). The 
maximal value of nd(_S) is attained at S=O and is 
found to be 5 .14 MP a. 

4.3 Modelling moisture effect on background P-M 
density distribution 

To determine the dependence of the background 
density Po( ac,ao;S) on saturation, we follow the 
identification procedure for Po( ac,ao;S) as presented 
in 3.2. The stress-strain data at seven different val­
ues of the saturation were considered: 0j =100, 60, 5, 
2, 1, 0.5 and 0 % (see e.g. Figure la). We assume 
the decay parameter K to be independent on the satu­
ration level. The basic background density function 
PBW;0j) for each saturation level 0j is then ap­
proximated by a sum of three exponential function 
(n8=3 in equation 8) and the parameters as;( 0j) and 
bs;(::>j) (i=l..3, j=l..7) are determined based on the 
discrete data PBlak;::>j) (k=l...20). We found the 
constant a81( ::>j) of the first exponential function in 
equation 8 to be highly dependent on the saturation 
level, while the other parameters were found to be 
merely insensitive to the saturation level. Let us de­
fine the macroscopic interaction pressure, repre­
senting moisture induced microstresses responsible 
for the change of the basic background density upon 
changes in saturation, by n8(S) (B meaning back­
ground density). In analogy to the exponential de­
pendence of the diagonal interaction pressure n,l(S) 
on saturation (equation 16), we assume an exponen­
tial relation for the background interaction pressure 



(17) 

Since only the first exponential function is found 
to be dependent on saturation, we may write, in 
analogy to expression 13 for the diagonal density 
distribution, the general expression for the basic 
background density function p 8 (er;S) as 

p 8 (er; S) = a 81 exp (- b 81 (er + n-8 ( S))) 

+ a82 exp(-b8 p )+ a83 exp(-b83er) 
(18) 

Note that the maximal value of the background in­
teraction pressure 7ra(S) is attained at S=O and is 
found to be 1 Mpa, which is much lower compared 
to the diagonal interaction pressure (n-c~O)= 5.14 
MPa). 

In order to check the validity of the determined 
diagonal and background density distribution and 
their dependence on saturation, we simulate the 
hysteresis loops for different saturation levels and 
the dependence of the strain at maximal pressure on 
saturation (see Figure 1 a-1 b). A good agreement 
between experimental results and P-M simulations is 
observed, showing the ability of the P-M space 
model, enriched with moisture interaction pressures, 
to describe the experimental findings. 

4.4 Discussion 

We observed that only the first exponential function 
of the diagonal as well as the first exponential func­
tion of the background density distribution is sensi­
tive to moisture. The first exponential function de­
scribes HEU's, which open and close at low external 
pressure. This population of HEU's is thus find to be 
moisture sensitive. On the other hand, the HEUs, 
which open and close at higher external pressure, are 
found to be insensitive to moisture. We can thus 
distinguish two different populations of HEU's in 
Berea sandstone: a first population sensitive to 
moisture situated in the lower pressure range and a 
second population at high opening and closing pres­
sure, which are insensitive to moisture. 

Referring to the P-M space, we interpret the 
moisture sensitivity as follows: in a wet state the 
same excursion in external stresses is able to activate 
more HEU's of the first population than in a dry 
state. The activation results in a larger density of 
HUE's in an activation triangle, and therefore a 
lower modulus and higher nonlinearity. This means 
that partial saturation induces a shift in the distribu­
tion of certain elastic elements in the P-M space to­
wards a higher (external) stress range compared to 
the reference fully saturated state. The total number 
of elastic elements in P-M space is assumed con­
served. Only the number of activated units increases 
with saturation. 

The moisture dependence, described by the mac­
roscopic interaction pressures n-<AS) and n-8 (S), turns 

out to be only important in the low saturation range, 
between 0 and 20 %. Moreover, the interaction pres­
sure for the reversible elements n-<AS) is found to be 
5 times larger compared to interaction pressure for 
the hysteretic elements n-a(S). Reversible elements of 
the first population are thus more moisture sensitive 
than hysteretic elements. 
In (Van Den Abeele et al. in press), we used the 
equivalent macroscopic capillary pressure Pc (pc= pg 
- p1; p meaning pressure and subscripts g and I refer­
ring to gaseous and liquid phase) as a physically 
more relevant potential to describe the state of the 
fluid phases present in the porous medium. Using 
the state relation S(pc) (Carmeliet et al. 1999) we ex­
press the interaction pressures n-<AS) and n-8(S) as 
function of the capillary pressure. Relating capillary 
pressure to pore size (using Laplace's law), we find 
that only moisture present in the finer pores ( 10-9 

-

10-6 m) is responsible for the observed moisture ef­
fect on the non-linear elastic behaviour of rock (Fig­
ure 4). Moisture _rrese~t in the midsize pore s~s~em 
(peak around 10 - m) is found to play a neghg1ble 
role in the material behaviour of Berea sandstone. 
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Figure 4. The diagonal interaction pressure ni,S) and back­
ground interaction pressure rc8(S) as function of the equivalent 
pore radius. The pore volume distribution fl· of Berea sandstone 
indicates that only the fine pore system produces the interac­
tion pressures. 

As a final remark, we try to link our observations 
to the material composition of Berea sandstone. 
Berea sandstone is composed of quartz grains and 
contains a considerable amount of clay and other 
secondary mineralisation. The bonding material is 
primarily silica. Based on all observations, we think 
that especially the fine pores, situated in the soft 
material (clay, silica glue), are responsible for the 
observed moisture influence. Also, the HEU's of the 
first population are assumed to be situated in this 
soft material and are therefore easily activated by 
moisture present in the fine pore system. The second 
population of HEU's, which are closing and opening 
at higher pressures, are though to represented by 
structural features of larger size: grain-to-grain 
boundaries, asperities and microcracks. Moisture 



present in these features only produce low capillary 
pressures, which explains the moisture insensitivity 
of the second population of HEU's. 

5 CONCLUSIONS 

The experiments we described in this paper suggest 
evidence for the role of fluids on the non-linear be­
haviour of Berea sandstone. We conducted both 
quasi-static and dynamic measurements. Significant 
observations from these experiments were: the non­
linear response of the rock samples changes signifi­
cantly with saturation, in particular between 0% and 
10-25% water saturation; the material softens and 
becomes more hysteretic with increasing water satu­
ration. 
The non-linear hysteretic behaviour is interpreted 
using the so-called P-M space model. In this phe­
nomenological material model, the material is repre­
sented by an assemblage of elastic elements that 
may or may not behave hysteretic as function of the 
applied stress. The important physical quantity in 
this description is the density distribution of the 
HEU's (Hysteretic Elastic Units) in P-M space. Re­
versible elements are described by the diagonal den­
sity distribution, while hysteretic elements are de­
scribed by the background density distribution. We 
proposed to describe the density functions by a sum 
of exponential functions, which simplifies the identi­
fication problem and offers the possibility to discern 
different populations of HEU's. 
To incorporate moisture effects in the classical P-M 
construct, we enriched the P-M space model by 
moisture interaction pressures, which represent the 
combined effects of all complex fluid-solid interac­
tion forces. The moisture interaction pressure for re­
versibe elements is found to be larger compared to 
hysteretic elements. The interaction pressures induce 
a shift of elements in P-M space and moisture in­
duced effects can thus be interpreted as a relocation 
in the density of HEU's in the P-M space. The ob­
served decrease of the dynamic stiffness with in­
creasing saturation can be interpreted as an increase 
of the reversible elements. At the same time, the in­
crease of nonlinearity points towards an increase of 
the number of hysteretic elements. 

Based on the P-M modelling, we can distinguish 
two different populations of HEU's in Berea sand­
stone: a first population sensitive to moisture situa­
ted in the lower pressure range and a second popula­
tion at high opening and closing pressure, which are 
insensitive to moisture. Reversible elements of the 
first population are found to be much more moisture 
sensitive compared to hysteretic elements. Linking 
these observations with the material structure of Be­
rea sandstone, we think that especially the fine po­
res, situated in the soft material between the sand 
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grains are responsible for the observed moisture in­
fluence. The HEU's of the first population are assu­
med to be situated in this soft material and are there­
fore easily activated by moisture present in the fine 
pore system. The second population of HEU's, 
which are closing and opening at higher pressures, 
are though to represented by structural features of 
larger size: grain-to-grain boundaries, asperities and 
microcracks. Moisture present in these features only 
produce low capillary pressures, which explains the 
moisture insensitivity of the second population of 
HEU's. 

In conclusion, we believe that the phenomenol­
ogical P-M model offers a great potential for under­
standing the complex non-linear hysteretic elastic 
behaviour of porous materials including the effect of 
moisture saturation and damage. Though limited in 
its present state to applications for rocks, the model 
will be applied to cementitious materials like con­
crete in the near future. 

REFERENCES 

Bourbie, T., Coussy 0., & Zinszner B. 1986 Acoustique des 
milieux poreux. Paris: Editions Technip. 

Carmeliet, J., Houvenaghel, G. & Descamps, F. 1999. Multiscale 
network for simulating liquid water and water vapour transfer 
properties of porous materials. Transport in Porous media, 
35: 67-88. 

Guyer, R.A., & Johnson, P.A. 1999. Nonlinear mesoscopic 
elasticity: Evidence of a new class of materials. Physics 
Today 52: 30-35. 

Guyer, R. A., McCall, K. R. & Boitnott, G. N. 1995. Hystere­
sis, discrete memory and nonlinear wave propagation in 
rock. Phys. Rev. Let. 74: 3491-3494. 

Guyer, R. A., McCall, K. R., Boitnott, G. N., Hilbert Jr., L.B. 
& Plona, T.J. 1997. Quantitative implementation of Prei­
sach-Mayergoyz space to find static and dynamic elastic 
moduli in rock. J. Geophys. Res. 102: 5281-5293. 

Mayergoyz, J.D. 1985. Hysteresis models from the mathemati­
cal and control theory points of view. J. Appl. Phys. 57: 
3803. 

McCall, K. R. & Guyer, R. A. 1994. Equation of state and 
wave propagation in hysteretic nonlinear elastic material. J. 
Geophys. Res. 99: 887-23,897. 

McCall, K. R. & R. A. Guyer. 1996. A new theoretical para­
digm to describe hysteresis, discrete memory and nonlinear 
elastic wave propagation in rock. Nonlinear Processes in 
Geophysics 3: 89-101. 

Preisach, F. 1935. Uber die magnetische Nachwirkung. Z. 
Phys. 94: 277. 

Van Den Abeele, K. E-A., Johnson, P. A., Guyer, R. A. & 
McCall, K. R. 1997. On the analytical solution of hysteretic 
nonlinear response in elastic wave propagation. J. Acoust. 
Soc. Am 101: 1885-1898. 

Van Den Abeele, KE-A., Carmeliet, J., Johnson P.A. & Zin­
szner, B. In press. The Influence of Water Saturation on the 
Nonlinear Elastic Mesoscopic Response in Earth Materials, 
and the Implications to the Mechanism of Nonlinearity, J. 
Geophys. Res. 

Zinszner B., Johnson PA and Rasolofosaon P.N.J. 1997. Influ­
ence of change in physical state on elastic nonlinear response 
in rock: effects of confining pressure and saturation. J. Geo­
phys. Res. 102: 8105-8120. 


