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Beyond the Crack Size Criterion: The Effect of a Fracture on Calcium 

Depletion of Cementitious Materials 

F.H.Heukamp, M.Mainguy & F.-J. Ulm 
Massachusetts Institute of Technology, Cambridge, Massachusetts 

The importance of cracks on the depletion of cementitious materials is usually assumed to be high. In this 
paper, similarity properties of diffusion dominated mass transport coupled with Calcium dissolution in cracked 
cementitious materials are presented. Together with model-based simulations that confirm the self-similar prop­
erties of diffusion dominated mass transport in the fracture, it is shown that diffusion dominated transport does 
not significantly accelerate the Calcium leaching of the bulk material. In tum, a first estimate of the effect of 
Calcium leaching on the brittleness of the material predicts an increase in ductility. 

INTRODUCTION 

Cracks and fractures in low permeable porous mate­
rials have long been suggested to affect the overall 
mass transport and related chemo-physical phenom­
ena, such as phase-change, dissolution and sorption 
processes. And in some industrial concrete applica­
tions, cracks are considered critical to the long-term 
dimensional stability of structures. This is the case 
in e.g. nuclear waste disposal structures, subjected 
to the critical design scenario of calcium leaching 
by permanently renewed water (Adenot et al. 1999). 
For containment structures, critical crack size criteria 
are often suggested as a quality control to ensure the 
durability performance of concrete containers, barri­
ers and encasement. This paper, however, argues that 
the crack opening is not the most critical parameter 
affecting the overall degradation kinetics of the mate­
rial, if the mass transport through the fracture is dif­
fusion driven. Our argument is a dimensional one. 

2 REFERENCE PROBLEM OF CALCIUM 
LEACHING IN CRACKED POROUS MATERI­
ALS 

2.1 Idealized Geomet1y and Problem 

We consider a semi-infinite domain y > 0, divided by 
a semi-infinite fracture channel of constant width 2b 
(see Fig.I), which is much smaller than the fracture 
length. 

The cementitious material is assumed a two-phase 
porous material, consisting of a solid skeleton and 
an interstitial pore solution. Calcium (Ca), the mod­
eled mineral, is present in both phases. The Calcium 
leaching process is initiated as the Ca-concentration 
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Figure I: Fracture-Porous medium system. A diffusion process 

occurs in the fracture coupled with diffusion and dissolution in 

the porous medium 

in the interstitial solution is lower than the equilib­
rium concentration between pore solution and solid. 
We assume that the transport process in both phases 
is purely diffusive. The diffusion process in the ma­
trix is assumed to occur only in the x-direction, and 
is driven by a zero solute concentration boundary con­
dition prescribed at the inlet of the channel at y = O 
over the fracture width. The effect of advective trans­
port, which can play a significant role in low perme­
able materials (Walton and Seitz 1992), will be ad­
dressed at the end of the paper. 

2.2 Dimensional Analysis 

The simplified reference problem is the one of two 
orthogonal one-dimensional diffusion problems cou-



pled through the continuity of the Calcium concen­
tration at the interfacp x = 0, and the influx of solute 
from the matrix into the fracture channel. The govern­
ing equations of the problem are (Mainguy and Ulm 
2001): 

1. The mass conservation in the porous material i.e. 
for x, y, t > 0 : 

8(</Jpm) + 8mm _ _!!____ (<PDm 8pm) = O· (1) 
at at ax ax ' 

and in the fracture of constant fracture width 
2b,i.e. for y, t > 0: 

8pt + 8 (-D Dpt)+ qx = O· 
at t ay 2b ' 

(2) 

where Pm= Mc and Pt= Mc denote the con­
centration of the Calcium ions, with M the mo­
lar mass of Calcium, and c the molar concentra­
tion; mm stands for the apparent volume mass 
of the same mineral bound in the skeleton, and 
amm I at is the skeleton mass variation due to 
the leaching process. The solvent in the porous 
continuum is assumed at rest, so that the solute 
mass transport occurs through molecular diffu­
sion, described by Fick's first law (term of the 
form -<PDm8Pm/8x). The flux -Dt8pJ/8y ac­
counts for the diffusive mass transport in the 
fracture. Finally, if we assume that the fracture 
width 2b and the porosity <P of the solid matrix 
are not changed due to the dissolution process, 
the diffusion coefficient in the solid matrix D 
and the hydrodynamic coefficient in the fractu~ 
D t can be considered as constant. 

2. The jump [qx] in solute flux over the fracture of 
opening 2b, which results from the flux of matter 
from the porous material in the the fracture chan­
nel. Taken the symmetry of the problem with re­
gard to the fracture channel, the flux jump reads: 

(3) 

3. The chemical dissolution law: At chemical equi­
librium, the molar concentration c of the Cal­
cium in the interstitial pore solution is equal to 
the chemical equilibrium concentration Ceq· lf we 
note Peq = Mceq the corresponding volume mass 
density at chemical equilibrium, and mm the ap­
parent volume mass of the same mineral bound 
in the skeleton, the instantaneous dissolution of 
the mineral bound in the skeleton is described by 
(Mainguy and Coussy 2000): 

mm 2': 0 ; Pm - Peq ::::; 0 ; mm (Pm - Peq) 0 
(4) 

4. The initial conditions, at time t = 0, in the matrix 
forx,y > 0: 

Pm(x, y, t = 0) = Peq, mm(x, y, t = 0) = m 0 

(5) 

, and in the fracture for y 2': O: 

Pt(Y, t = 0) = Pm(x = 0,y, t = 0) = Peq (6) 

where m 0 is the initial apparent volume mass 
density of the mineral bound in the skeleton. 

5. The boundary condition at the fracture inlet: 

Pt(Y = 0, t) = 0, t > 0 (7) 

6. The continuity of the solute concentration be­
tween the fracture and the matrix: 

Pt(Y, t) Pm(x 9, y, t), y, t > 0. (8) 

A dimensional analysis shows that the three dimen­
sionless unknown of the problem, f5t, Pm and mm de­
pend on four invariants (Mainguy and Ulm 2001): 

P- _ Pt _ -r(y- t- ~) - Pm g(- - t- ) t - - - .r ' , , c ; Pm = - = x, y, , c 
Peq Peq 

(9) 

mm -- = 1-l(x, y, t, c) 
mo 

(10) 

with: 

f}=y 1 (Dtm) 1/4 

Dt(2b/<P) 
(11) 

( 12) 

The dimensionless coordinate y characterizing the 
diffusion process in the fracture indicates a self­
similar time-space relation proportional to the 
quadratic root of time in a diffusion controlled 
mass transport in the fracture (i.e., y(t) ex t 114

). The 
t 114 -dependency of the diffusion controlled mass 
transport translates the fact that the mass transport is 
governed by two coupled ID-diffusion process, one 
in the y-direction through the fracture, the other in 
the x-direction through the bulk material. 

The remaining invariants x, t and E , defined by 
(12), have the following physical significance: The 
Boltzmann variable x characterizes the diffusion pro­
cess in the porous material. The normalized time t re­
lates the solute diffusion length 2VJJ:,i in the porous 
material to the fracture width, or more precisely to 
an effective fracture width, magnified by the inverse 
of the bulk porosity, 2b/</J. This invariant introduces a 
gauge time Tb: 
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(13) 

Finally, invariant E can be interpreted as a macro­
scopic solubility constant of the dissolution process, 
which relates at equilibrium the apparent chemical 
equilibrium mineral mass density in solution, <l>Peq' 
to the initial mineral mass density, m 0 , in the solid 
phase. These invariants provide a means to study 
the asymptotic behavior of diffusion dominated mass 
transport in the fracture. 

2.3 Large Time Asymptotic Behavior 

The one-dimensional problem of diffusion and disso­
lution in the porous medium with a zero boundary 
condition prescribed at x 0, which is similar to a 
Stephan problem is characterized by the presence of 
a sharp dissolution front or wave propagating at finite 
velocity through the bulk material. The position xd 

of the dissolution front depends on the square root of 
time, and is given by (Mainguy and Coussy 2000): 

(14) 

where xd = xd(E) is the solution of the following 
equation: 

The dissolution front located by xd (see figure 2) sepa­
rates a completely degraded zone where the solid min­
eral is entirely dissolved (mm = 0 for x < xd), from 
an undegraded zone where the solid mineral is at the 
initial value (mm = m 0 for x > xd). 

y 

x 

Figure 2: Definition of the degradation profile with xd and Yd 

the degradation lengths in the x-direction and along the fracture 

channel. 

The instantaneous dissolution process implies also 
the existence of a finite degraded depth along y at 
the fracture-solid matrix interface (x = 0). This de­
graded depth, to which we will refer as fracture degra­
dation length, is noted Yd and is shown in figure 2. For 
large times t » 1 +-+ t » Tb, for which the mass trans­
port in the fracture is in a quasi-steady state condition 
with the solute influx from the surrounding porous 
medium, the solution of the problem becomes inde­
pendent of the normalized time t, and (9) and ( 10) 
reduces to: 

/5 J = :F (fJ,E) ; Pm Q ( x, fJ,E) ; mm = 1-l ( x, fJ,E) 
(16) 

This implies the following form of Yd for the limit 
case at large times: 

217 

where y~if ( E) is the dimensionless front pos1t10n 
function, which -similarly to xd(E) in (14)- links 
the fracture degradation length to the macroscopic 
solubility E. Eq. (17) indicates that the fracture degra­
dation length develops as a linear function of the 
quadratic root of time (y~if ex: t114), and is scaled by 

the square root of the crack opening (y~if ex: y12b{¢). 
For large times t » Tb, due to the t1/ 4 _ dependency, 
the diffusion through the fracture slows down in time, 
in comparison with the one dimensional degradation 
process, which penetrates with the square root of time 
into the uncracked bulk material. The solute diffu­
sion through the fracture, therefore, is not expected 
to significantly increase the chemical degradation of 
the material. 

Finally, the relevance of the asymptotic solutions 
( 17) and (22) of the studied reference problem is 
defined by the gauge time Tb, which increases with 
(bl</> )2 

/ Dm. For concrete applications in nuclear 
waste containment, maximum crack openings due to 
shrinkage are on the order of 2b :S 1 mm, the porosity 
is on the order of</>= 0.1 - 0.5, and the calcium diffu­
sivity is </>Dm ~ 10-12 

- 10-11 m2/s (Tognazzi 1998). 
This gives a rough estimate of Tb :S 30 days, which im­
plies that the asymptotic expression ( 17)is relevant for 
assessing the effect of cracks on the chemical degra­
dation process of concrete at the time-scale of nuclear 
waste disposal of 300 - 1000 years. 

3 SIMILARITY PROPERTIES OF 'REAL' CAL­
CIUM LEACHING IN CRACKED CEMENT­
BASED MATERIALS 

'Real' calcium leaching in cement-based materials 



is a multi-stage process, which involves the succes­
sive demineralization of different constituents of the 
mineral matrix at specific calcium ion concentra­
tions in the interstitial pore solution (see e.g. (Berner 
1988); (Adenot and Bui! 1992); (Reardon 1992)). 
This leads to multiple dissolution fronts and an in­
crease in porosity cf>, which were not considered in the 
ID single phase demineralization process analyzed 
before. The non-linearity of the process requires nu­
merical simulations. 

3.1 Model, Model Parameters and Finite Ele­
ment Implementation of Calcium Leaching in 
Cracked Cement-based Materials 

The model we consider is a two-dimensional exten­
sion of the 1 D diffusion-dissolution problem , given 
by (I) to (4). The coupled diffusion-dissolution pro­
cess in the uncracked cement-based material is de­
scribed by the molar mass balance equation: 

8 OS 
ot(cf>c) + ot - \7. (Deff. Ve) 0 ( 18) 

and a chemical equilibrium condition of the multi­
stage dissolution process: 

s g(c) = 0 (19) 

In (18), c Pm/ M is the molar concentration of 
the calcium in the interstitial pore solution. It is 
related through the chemical equilibrium condition 
( 19), which replaces ( 4 ), to the molar concentration of 
calcium, s =mm/ M, bound in the different minerals 
of the solid matrix. Deff is the tensor of effective ion 
diffusivities of calcium in the porous material, and de­
pends on the porosity ¢, which in turn depends on the 
solid concentration, and thus on the solid molar con­
centration s. Functions Deff = D eff (cf>) 1 (1 = second 
order unit tensor), cf> cf>(s) and the chemical equilib­
rium condition ( 19) are fully described in (Mainguy 
and Coussy 2000) for a cement paste of water: cement 
ratio equal to w / c = 0.4. 

Analogously, the mass balance in the fracture is 
written in molar form: 

oc 
8t 

\7 · (D 1 · \7 c) = 0 (20) 

In contrast to the simplified ID-model (i.e., Eq. (2)), 
the calcium influx (3) from the surrounding porous 
material need not to be considered explicitly, but 
is handled in the 2D-model through the continuity 
condition at the fracture-matrix interface. The tensor 
of hydrodynamic dispersion coefficients in the frac­
ture D 1 accounts for the molecular diffusion in the 

fracture, but also for the fluid mechanical dispersion 
due to the transversal variations of the fluid velocity 
across the fracture ('Taylor' dispersion), even though 
molecular diffusion in concrete applications domi­
nates over fluid dispersion. Here, D1 = D*l,with D* 
the isotropic calcium diffusion coefficient in free wa­
ter. In the numerical investigation, the calcium diffu­
sion coefficient is fixed at an upper bound value of 
D* = 2 x 10-9 m2 s- 1 . 

Equations (18)-(20) are solved using the Finite El­
ement Method based on a variational formulation of 
the problem with s and c as principal unknowns, 
linked by the chemical equilibrium condition ( 19) at 
the fracture-matrix interface. In the uncracked matrix, 
the use of s = s(x, t) as principal unknown within low 
order finite elements (linear basis functions), together 
with an implicit time integration scheme and mass 
lumping (see, e.g. (Hughes 1987)), ensures an accu­
rate oscillation-free determination of the position of 
the dissolution fronts in time and space. In the frac­
ture, where the bound calcium concentration has no 
significance, the calcium concentration c c(x, t) is 
employed as principal unknown. Finally, the continu­
ity of both the calcium concentration and the normal 
calcium flux in the two-field discretization (s in the 
matrix, c in the fracture) is realized through the imple­
mentation of the chemical equilibrium condition ( 19) 
into two-node penalty elements with ci as degree of 
freedom in the fracture, and si as degree of freedom 
on the matrix side. Space and time step increments are 
selected such to avoid the effects of numerical disper­
sion and overshoot, which may result from high fluid 
flow velocity in the fracture (see, for instance, (Sun 
1996)). 
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Given the symmetry of the fracture channel and 
surrounding matrix, the finite element simulations are 
realized on half of the geometry displayed on figure 
1, with a zero flux boundary condition applied along 
the fracture center line (symmetry), and on the top 
and right sides of the rectangular geometry (far field 
conditions). Initial conditions correspond to a calcium 
molar solid concentration of s(x, t = 0) = 14.7 x 103 

mol/m3, which is related by chemical equilibrium 
(i.e., Eq. ( 19)) to an interstitial calcium concentration 
of c(x, t = 0) 21 mol/m3

. Two degradation scenar­
ios with the following boundary conditions are stud­
ied: 

- Bl: A zero calcium concentration prescribed at the 
inlet of the fracture. This case corresponds pre­
cisely to the simplified ID-degradation scenario, 
for which the similarity properties were previ­
ously derived. In this case, the solid material 
diffusivity in the y-direction is set to zero (i.e., 
D;f1 ey · Def! · ey = 0), which implies a zero 
flux boundary condition along y = 0 and :1; > b. 

- B2: A zero calcium concentration prescribed along 
y = 0 on both solid material and fracture inlet. 



This case corresponds to the realistic degradation 
process of cracked porous media, and will allow 
us to analyze the validity of asymptotic behav­
iors previously identified for the idealized degra­
dation process. In this case, the solid material 
diffusivity is assumed isotropic, Deff =Def! 1. 

3.2 Discussion of Results of Model-Based Simula-
tion 

An application of the model gives the following re­
sults: For boundary conditions B 1, figure 3 displays 
the evolution of the fracture degradation length 'Y:if 
versus the quadratic square root of time t 1/

4 for dif­
ferent fracture openings, ranging from 2b = 0.1 mm 
to 2b = 1 mm. Figure 4 shows the same results, but in 
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Figure 3: Fracture degradation length Yd versus t114 for a pure 

diffusive mass transport in the fracture, a zero solid matrix dif­

fusivity in the y-direction and different crack openings 2b: 0 = 

0.1 mm; • = 0.2 mm; D = 0.4 mm; • = 0.6 mm; 0 = 0.8mm; 
+ = I mm. The solid line corresponds to the one dimensional 
degradation of the solid matrix (xd 1.5 x 10-2Jt with t in 

days and Xd in cm) [Boundary Condition Bl] 

a plot of 'Y:if / yl2b versus t 1/ 4 for the maximum and 

minimum crack opening. Noting that 'Y:if character­
izes the position of the Portlandite dissolution front, 
which is the first mineral dissolved in cause of 'real' 
calcium depletion, the numerical results confirm the 
similarity properties of the asymptotic solution (17), 
i.e.: 

@ The asymptotic self-similarity 'Y:if ex t 114 , which 
is reached for large times t 2: 2 yrs. This is con­
sistent with the estimated gauge time Tb ~ 30 d 
fixed by the application (i.e., t » Tb). 

• The V2b-magnification of the diffusion induced 
degradation process through the fracture, high­
lighted by a perfect alignment of the results 
along a straight-line in the 'Y:if / yl2b x t 114 -plot, 
displayed in figure 4. By linear regression, the 
numerical results for t ~ 2 yrs can be expressed 
in the form of (17): 
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Figure 4: Fracture degradation length Yd/V'ib versus t 114 for 

a pure diffusive mass transport in the fracture, and for different 

crack openings 2b: 0 = 0.1 mm and + = 1 mm. The solid line 
corresponds to the linear regression (30) of data for crack widths 

0.1, 0.2, 0.4, 0.6, 0.8, and 1 mm, and times t > 2 yrs. [Boundary 

Condition Bl] 

'Y~) = l.73t1!4 
- 0.84 (21) 

with 'Y:if and 2b in cm, and time t in days. 

The asymptotic solution (17), therefore, still holds 
despite the non-linearity of porosity ¢ = ¢( s), diffu­
sivity Def!= DeJJ(¢), and chemical equilibrium con­
ditions= g( c), that characterize 'real' calcium leach­
ing. It can be employed for assessing the Portlandite 
dissolution front, when replacing the diffusivity of the 
solid matrix (Dm) and the porosity(¢) in (17) by the 
values of the same parameters of the undegraded ma-

. terial. 
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Finally, from a practical point of view, the con­
firmed asymptotic behavior suggests -for large 
times- an insignificant acceleration of the bulk ma­
terial degradation through the diffusion dominated 
mass transfer in the fracture, in comparison with 
a ID-dissolution process that originates from the 
boundary at x = 0. This is illustrated in figure 3, in 
which the solid line represents the front position of 
the ID-dissolution process through the bulk material 
(similarly to Eq. (14)). As time increases, the lD­
degradation process, which evolves with the square 
root of time, reaches and overtakes the fracture degra­
dation length 'Y:if (t) evolving with the quadratic root 
of time. This behavior is confirmed through a re­
fined analysis applying boundary conditions 82. The 
degraded depth 'Y~if (t)/V2b versus t 1

/
4 is given in 

figure 5, and need to be compared with figure 4. 
We note a significant deviation from the asymptotic 
behavior (21) for times t ~ 2 - 10 yrs, depending 
on the crack opening. This deviation corresponds to 
the switch from the diffusion-induced degradation 
through the fracture (y~if (t) ex t 114 ), to the diffusion-
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Figure 5: Fracture degradation length Yd/V'ib versus t114 for 

a pure diffusive mass transport in the fracture, isotropic solid 
matrix diffusivity, and different crack openings 2b: 0 = 0.1 mm; 

• = 0.2 mm; D = 0.4 mm; + = 1 mm. The solid line corresponds 
to the linear regression (30) [Boundary Condition 82] 

induced degradation through the solid porous mate­
rial (yd(t) ex: t 112

); and the time for this switch to oc­
cur corresponds to the time it takes the lD-diffusion­
dissolution process prevailing in the bulk material to 
reach the slower t114 - diffusion in the fracture. This 
switch can also be depicted from figure 6, which 
shows the same as figure 5, but now plotted as a 
function of the square root of time. For large values 
of time, the degraded depth develops with the same 
t112-kinetics (i.e. same slopes in figure 6), indicating 
that the degradation process at the fracture-matrix in­
terface is governed by the one-dimensional diffusive 
transport prevailing in the bulk material. 

From the J26-dependence of the diffusion domi­
nated mass transport in the fracture, it is readily un­
derstood that this switch occurs the earlier in time and 
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Figure 6: Solid calcium concentrations for a pure diffusive 

mass transport in the fracture at different times. (Crack width 

2b = 0.4 mm, mesh= 10 x 12 cm) [Boundary Condition 82] 

the stronger, the smaller the fracture opening. There­
fore, as expected from physical evidence, the smaller 

the fracture opening, the less affects a diffusion­
dominated mass transport in the fracture the overall 
degradation process. For large times, the difference 
between the positions of the degradation fronts along 
the fracture and in the bulk material becomes con­
stant. 

Finally, we should note that there exists another 
type of t 112 - dependence of the front propagation yd, 
which becomes relevant when advective transport in 
the fracture is taken into account. In this case, for 
large times, the fracture degradation length evolves 
according to (Mainguy et al. 2001 ): 

where yddv(E) is the dimensionless front pos1t1on 
which depends only on the macroscopic solubility pa­
rameter E; while \/ is the velocity of the solvent in 
the crack. However, from model-based simulation we 
showed that this advective transport in cement-based 
materials is only relevant for 'high' fluid velocities of 
\/ 2 8 cm/d, which corresponds roughly to a Peclet 
number on the order of Pe'.:::::'. 80. 

4 CONCLUSIONS 
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1. Diffusion dominated mass transfer in fractures 
does not significantly increase the material 
degradation. The propagation of the fracture 
degradation length develops with the quadratic 
root of time, until the faster t 112 -front prop­
agation through the bulk material catches up 
with the t 114 -degradation process in the frac­
ture. This shift in self-similarity occurs the ear­
lier the smaller the fracture width, in cracked 
porous materials with fractures of aspect ratios 
Ly/ 2b > 200 (estimated from (21) and the so-
1 ution of the lD-calcium leaching process). For 
smaller fracture aspect ratio, a solute congestion 
will occur in the fracture: the diffusion in the 
fracture is too slow to evacuate the mineral dis­
solved in the adjacent porous materials to the 
outside. 

2. While this paper focusses on the effect of cracks 
and fractures on the demineralization process, it 
is of interest to evaluate inversely the effect of 
the leaching process on crack propagation. For 
instance, for a given structure of size£, Irwin's 
number I provides a first estimate of the extent 
of the fracture process zone £, and therefore of 
the brittleness or ductility of the fracture: 

I= (!:_) i/2 ex: ft.C1/2 (23) 
e (EG1)1/2 

Here, ft is the tensile strength, E the Young's 



modulus, and G J the fracture energy. Therefore, 
for the same structure of size £, the ratio of 
Irwin's number before (Io ex €~ 1/2 ) and after 

degradation (I00 ex {~1 /2 ) is inversely propor­
tional to the square-root of the fracture-process 
zone length ratio: 

( 
Io ) rv (_h_) X ( E00 ) l/

2 
X ( G Joo) l/2 

Ioo f too Eo G Jo 
(24) 

The strength decrease ("chemical softening") 
due to calcium leaching is on the order of 90% 
(Heukamp et al. 2001 ), and the loss of elastic 
stiffness ("chemical damage") on the order of 
60% (Bellego 2001), thus: 

foo ~40x (GJoo) (25) 
GJo 

A pessimistic estimate for G J is that it evolves 
proportional to G J ex ft2 / E, and an optimistic 
one is that G J evolves in the same way as the 
energy release rate G, which in turn is roughly 
proportional to the Young's modulus, i.e. G J ex 
E. The lower bound leads to £00 / £0 2:, 1, while 
the second case, which is consistent with Le 
Bellego's three point bending data on degraded 
notched beams (Belle go 2001), leads to £00 / £0 ;S 
16. Hence, it is expected that the fracture pro­
cess zone £ increases due to chemical degrada­
tion, which suggests that the degraded material 
behaves more ductile than the undegraded one. 
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