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ABSTRACT: Over the past years, damage mechanics has become a more and more popular tool for 
describing concrete fracture. The objective of this paper is to provide a review of the research 
performed by the authors in this field. Several simple scalar damage models, aimed at modelling mode I 
cracking in concrete, are examined first. Their connection with smeared crack models and discrete 
analyses of failure in brittle disordered media is discussed. Several enhancements of the initial isotropic 
formulation are also reviewed. The paper concludes with the extension to non local damage, in an 
integral or gradient format and to its ability to capture structural size effects. 

1 INTRODUCTION 

Continuum damage mechanics is a framework for 
describing the variations of the elastic properties of a 
material due to microstructural degradations. 
Originally, it has been devised as a simplified model 
which could handle creep failure of metal alloys. Its 
application to the quasistatic response of ductile and 
brittle materials came later on, mostly in the 80's, 
but it was essentially limited to the prediction of the 
inception of cracking because the issues of ill­
posedness due to softening and strain localisation 
needed still to be tackled properly. It is with the 
development of non local (integral and gradient) 
damage models, that the theory found its widest 
range of applicability, covering within a single - still 
continuum based approach - crack inception and 
crack propagation in a format which could be 
conveniently implemented in general purpose finite 
element software. 

Non locality raised some issues which are still not 
completely settled. The idea of incorporating an 
internal length in a continuum model is based on the 
assumption that local interactions develop in the 
course of material failure. This interaction, which is 
by definition of a non local nature, needs to be 
supported by experimental and theoretical evidence, 
that is by models and observations at different scales 
of the material description. It is this aim for a better 
understanding of how fracture occurs in concrete 
which motivated discrete - lattice based -
approaches and at the same time strong connections 
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with a large body of literature in statistical physics 
dealing with the scaling of fracture. 

The aim of the present contribution is to review 
some basic damage models and to discuss recent 
approaches to discrete and continuous damage 
proposed by the authors. More advanced damage 
models with hysteretic effects, damage deactivation 
and damage induced anisotropy are included too. 
Their connection with traditional smeared crack 
models will be also outlined. In the final section of 
the paper, integral and gradient non local damage 
models will be summarised with a view to their 
ability to capture structural size effects. 

2 SIMPLE ISOTROPIC DAMAGE MODEL 

In continuum damage mechanics, the development 
of microcracks results in a progressive degradation 
of the material stiffness. In the reversible (elastic) 
domain, the stress-strain relation reads: 

(1) 

where au is the stress component, Ekt is the strain 

component, and C~kl is the stiffness tensor of the 

damaged material which is assumed to change in the 
course of the evolution of damage. The simplest 
approach to material damage is to assume that the 
material stiffness (for isotropic materials) remains 
isotropic. The stress strain relations become: 
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where Ea and Va are the Young's modulus and 

Poisson's ratio of the undamaged isotropic material, 
and 8ij is the Kronecker symbol. The damage 

variables d and D are independent and vary 
between 0 and 1. It should be pointed out that 
isotropic damage means two damage state variables. 
The subsequent assumption d = D yields the stress­
strain relationship used by Mazars (1984,1986): 
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or 
(4) 

where c3k, is the .stiffness of the undamaged 

material. According to this assumption, the 
Poisson's ratio is not affected by damage. 

In the context of this simplified model, the 
second principle of thermodynamics requires that 
damage cannot decrease. A damage loading function 
is needed to describe when damage will grow under 
load. In most cases, the following form of the 
loading function is used: 

f(e,K) = e-1( (5) 

where E is a positive equivalent measure of strain 
and K is a threshold value. The equation f 0 
represents a loading surface in strain space. For the 
uni-axial tensile case, the equivalent uni-axial strain 
in Eq. (5) is straightforward. It is the axial strain if 
the lateral strains are neglected. However, for 
general states of stress, damage evolution should be 
related to some scalar quantity, function of the state 
of strain. There are, to this regard, several proposals. 
For example, an appropriate definition for metals is 
rooted in the elastic stored energy (Peerlings et al. 
1998): 

e= (6) 

which is depicted in Figure 1. For concrete, Mazars 
(1984) proposed the following form: 

(7) 

where ci are the principal strains and <ci> = Ei when 
ci > 0 and <ci> = 0 otherwise (Fig. 1 ). A third 
possibility, which is also mentioned by Peerlings, is 
the modified von Mises definition. It is written as 
follows 

s- k 1 /+ 
- 2k(l-2V) I 

(k-1)
2 

/2 -~] 
2k (l-2v)2

' (l+v)2 2 

(8) 

11 and ]z are the first invariant of the strain tensor 
and the second invariant of the deviatoric strain 
tensor respectively. Only the modified von Mises 
criterion leads to a new material parameter, namely 
the factor k. The parameter k is the ratio between 
uni-axial compressive and uni-axial tensile strength. 

This criterion is also plotted in Figure 1, with k = 
10. The loading surfaces (Eqs. 6-8) are closed 
contours around the origin. The dashed lines 
represent the constant uni-axial compression and 
uni-axial tension stress paths. 
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Figure 1: Contour plots for s for the elastic stored 
energy (top left), Mazars definition (top right), and the 
modified von Mises expression (bottom), after Peerlings 
et al. (1998). 

The evolution of damage has the same form as in 
elasto-plasticity: 

if f(e,K) = 0 andj(e,K) = 0 

{
c/ = h(K) . 

then _ where d ~ 0 
K = E 

(9) 

{
d=O 

otherwise 
K=O 



The function h(K) is specific, depending on 
different models. For tension only, exponential 
softening can be used and 

(10) 

where K 0 ,a, 17 are model parameters. In order to 

capture the differences of mechanical responses of 
the material in tension and in compression, Mazars 
proposed to split the damage variable into two parts 
and used the equivalent strain defined in Eq. (7): 

(11) 

where d1 and de are the damage variables in tension 

and compression, respectively. They are combined 
with the weighting coefficients a 1 and ae defined as 

function of the principal values of the strains c~ and 

c~, due to positive and negative stresses (see 

Mazars, 1984). 
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Figure 2: uniaxial response of the model by Mazars (1984). 

In uniaxial tension a
1
=l and ae =O. In uniaxial 

compression ae=l and a
1
=0. Hence, d

1 
and de can 

be obtained separately from uniaxial tests. The 
evolution of damage is derived in an integrated 
form, as a function of the variable K: 

3 PROGRESSIVE FAIL URE MODELLED WITH 
A DISCRETE APPROACH 

The above approach of modelling progressive 
cracking in concrete may be viewed essentially as a 
phenomenological way to capture a phenomenon 
lying at the scale of cement paste and aggregate in 
concrete. It may then appear quite tempting to back 
this type of modelling with some analysis carried out 
at a lower scale. There are at least, two possibilities 
for such studies: the lattice analyses proposed e.g. by 
Van Mier and co-authors (Van Mier, 2000), or the 
discrete analyses as advocated by Hermann and 
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d =I - Ko(l-A) 
I 1( 

A1 
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K0 ,Al'Bt'Ac,Be are the parameters in this model. 
Figure 2 is an illustration of the uniaxial stress-strain 
response of the material with such a model. 

Roux (1990). In these two kinds of approaches, there 
are some fundamental differences: in the first one, a 
discrete representation of the material is mapped on 
to the geometry of the structural element to be 
modelled. There is a direct, one to one, relation in 
between the lattice properties and the material 
constituents. For instance, the structural properties 
of each element of the lattice depend upon where the 
element is located: in the cement paste, in the 
aggregate, or across their interface. In the second 
approach, the lattice is not meant to represent any 
geometry at the structural level. Each element of the 
lattice has a random strength which is meant to 
represent local disorder in the material (cement 
paste, aggregate, interface). The case of a lattice of 
infinite size represents the thermodynamic limit at 
which the discrete lattice is equivalent to a 
continuum point. This is the reason why researchers 
are mostly interested by scale effects, when studying 
such lattices. These scale effects, as we will see 
further, provide some information on what should be 
incorporated in an equivalent continuum model. In 
this section we are going to recall briefly the main 
results obtained with this techniques, which are 
relevant to continuum damage modelling. 

3.1 Discrete lattice analysis 

We are studying here a discrete system which is a 
regular two-dimensional lattice whose bonds are one 
dimensional (see Fig. 3). Complete details of this 
study can be found in (Delaplace et al., 1996). The 
lattice size is L x L where L is related to the total 
number of bonds n = 2!3. Each bond behaves 
linearly up to an assigned threshold where brittle 
failure is reached. The model does not aim at 
describing a specific material. It ought to be the· 
simplest model whose thermodynamic limit (lattice 
of infinite size) should be described by the damage 
theory. Yet, this description includes the essential 
ingredients: a two dimensional geometry, initial 
disorder, interactions and redistribution as the 
number of broken bonds increases. 
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Figure 3: Lattice used for the analysis (after Delaplace et al. 
1996) 

Instead of solving a mechanical problem, we use 
an electrical analogy which turns out to be strictly 
equivalent to the mechanical problem. The scaling 
properties of the mechanical problem and those of 
the electrical problem are identical (de Arcangelis 
and Herrmann, 1989). 

The heterogeneity of the material properties is 
restricted to the variability of the maximum stress at 
failure. We have chosen here a distribution which is 
constant between 0 and l, hence it is representative 
of a large disorder which yields to diffuse damage 
which localises progressively. The boundary 
conditions at the limit of the lattice are periodic so 
that the behaviour of an infinite system is 
represented and boundary effects are avoided. A 
monotonically increasing vertical displacement is 
applied at the top of the lattice while the bottom face 
is fixed. The computational algorithm removes one 
bond at a time. In order to determine the next bond 
to be broken at a given step, we look for the bond 
where the stress is the closest to its peak stress. This 
bond will fail when the displacement is increased. 

Note that there are two competing effects in the 
failure process: on one side, and because the 
material is disordered, bonds with a small strength 
fail first. On the other side, single crack propagation 
in the lattice produces a concentration of stress (e.g. 
at the crack tip) which may cause a bond with a high 
strength to fail. This illustrates how redistribution 
and disorder may compete during the failure 
process. Initially all local stresses are identical, and 
thus the first bond to break is the weakest. If the 
disorder is strong enough, the stress amplification in 
the vicinity of this first broken bond is not enough to 
induce a failure, and the second weakest bond may 
fail. This process yields diffuse damage. Eventually, 
at some stage, the stress heterogeneity due to the 
presence of a large density of broken bonds will 
dominate over the distribution. 

Each lattice possesses a unique distribution of 
bond thresholds. Obviously, analyses cannot rely on 
a single realisation of the random process, which 
assigns the bond strength distribution. Several 
computations with different random seeds must be 
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performed and analysed in a statistical fashion. 
The envelope of the lattice responses agrees with 

continuous damage models. Figure 4 shows a 64 x 64 

lattice at the inception of complete failure, when 
only one bond remains unbroken (i.e. when the 
lattice is about to separate into two pieces). As the 
number of broken bonds increases, their location 
localises over a tortuous line progressively - damage 
is diffuse at the beginning of the failure process and 
localises to form a macro crack. It is important to 
note that this localisation concerns the incremental 
damage. The final aspect of the distribution of micro 
cracks will appear as diffuse since it incorporates 
micro cracks generated at all stages. 

Figure 4: Lattice just before complete failure (after Delaplace 
et al. 1996). 

The numbers of broken bonds at peak and at 
failure are interesting because they show that 
damage is distributed. Would damage be localised 
along a single line (for brittle materials), the number 
of broken bonds at failure would be twice the system 
size, and the number of broken bonds at peak would 
be zero. This result would be achieved when there is 
no disorder in the lattice. 

Table 1 shows for each different size of lattice 
considered the number of runs performed, the 

L Runs n" nc 

8 1000 19 29 
16 500 76 105 
24 250 149 198 
32 250 255 340 
64 30 947 1148 

Table I: Number of broken bonds at peak and at failure as a 
function of the lattice size. 

averaged number of broken bonds at the peak 
current (load) 11" and the averaged number of broken 
bonds at failure nc. It should be noted that the 
number of broken bonds at failure is always higher 
than the number of broken bonds at peak. This 
indicates that the failure process is rather progressive 



and that the behaviour of the lattice departs from a 
brittle response due to spatial correlation and local 
disorder. 

3.2 Global properties of the discrete model 

The global properties of the discrete model at any 
state of damage are, in this approach, directly 
connected to the local distribution of stress N(a). 

Instead of characterising the distribution itself, 
valuable information can be obtained with the 
analysis of the moments of the distribution of the 
stress. The moment of order m is defined as: 

M 111 = f a"'N(a)da (13) 

These moments are of interest because of their 
physical meaning: the moment of order zero is the 
number of unbroken bonds. The first order moment 
is related to the average stress, the second order 
moment is proportional to the overall lattice stiffness 
E: 

M2 = f ra 2 N(a)da = 2GU2 = 2G (14) 

where r is the local compliance of the bond and U 
is the global displacement applied to the lattice. 

It is natural to investigate whether the number of 
broken bonds is a variable, which characterises 
correctly the evolution of damage in the continuum 
sense, that is a degradation of the global stiffness. If 
the number of broken bonds q I L2 (divided by the 
dimension of the lattice in order to have a quantity 
which is size independent) is the pertinent damage 
variable, the plots of the global conductance versus 
the non dimensional number of broken elements 
should be independent of the size of the discrete 
model. Delap lace et al. ( 1996) have shown that this 
is not true. Figure 4 shows a log-log plot of the 
moments as a function of the second order moment 
for different sizes of lattice. These plots do not 
depend on the size of the system, at least before the 
peak is reached. Hence, damage can be defined as 
the variation of the overall stiffness of the material. 
This result is a proof that progressive damage 
resulting from local brittle failure in disordered 
materials should indeed be modelled with the type of 
continuum model depicted in the previous section. A 
similar observation has been reported by Krajcinovic 
and Basista (1991 ). 
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Figure 5: Evolution of the first four moments of the distribution 
of stress as a function of the overall stiffness (after Delaplace et 
al. 1996). 
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3.3 Existence of a correlation length 

Assume that there is a length denoted as ~ which 

defines the smallest size of the representative 
volume of the material (RVE). By definition, this 
length is smaller or equal to the size of the lattice. 
This quantity is a correlation length in a statistical 
sense. Above this size, the material can be regarded 
as homogeneous, i.e. without correlation. The local 
response of each bond in the discrete model is not 
independent for cells in the lattice below this size. In 
such cells, the response cannot be regarded as that of 
a homogeneous continuum. In order to exhibit the 
existence of a correlation length as the number of 
broken bonds increases, one can analyse their 
distribution over the lattice. This analysis is based on 
the variation of distance between two bonds in the 
lattice, which are consecutively broken during the 
loading history according to the foregoing 
definitions: the distance between to neighbouring 
vertical bonds is 1 because there are L bonds on 
each column of the cell, and the distance between 
two neighbouring horizontal bonds is 0.5 because 
there are 2L bonds on each row of the cell. 

The histograms of the distribution of horizontal 
distance between two consecutive broken bonds 
denoted as h(d) can be approximated at least up to 
the peak: the distribution of the broken links is 
assumed to follow a power law function of the 
distance up to ~ and then it is a horizontal line. The 

length ~ corresponds then exactly to the smallest 
size of the RVE: 



The distance <;' is also the length at which the 

distribution changes from diffuse damage (constant 
distribution) to a progressive localisation of damage. 
Hence, it can be considered as a measure of the size 
of the zone in which damage localises. The first 
order moment of the distribution h(d) can be 
obtained numerically. Substitution of Eq. (15) in the 
expression of the first order moment yields an 
equation where the only remaining unknown is the 
correlation length. 
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Figure 6: Internal, correlation length vs. number of broken 
bonds (after Delaplace et al. 1996). 

Figure 6 shows the evolution of this correlation 
length. It increases with increasing damage. The 
existence of a correlation length suggests that the 
damage process should be spatially con-elated. This 
result is among the ones, which motivate the 
introduction of an internal length in non local 
damage models. Other proofs lie in the 
micromechanics of interacting cracks (Bazant 1987, 
Pijaudier-Cabot and Berthaud 1990). 

4 MORE ADVANCED ISSUES IN DAMAGE 
MODELLING 

We are going now to recall some damage based 
constitutive relations which have been derived in 
order to enhance the sometimes simplistic 
description presented in section 2. 

4.1 Damage model including a residual hysteretic 
behaviour 

The natural form of damage can be represented 
using tensors of the order eight. However, the 
experimental identification is a tedious task. Aiming 
at a physical and realistic description of oriented 
crack growth in concrete, without neglecting 
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simplicity requirements, leads to the use of a second 
order damage tensor formulation (Mazars and 
Pijaudier-Cabot, 1989). In the latest model by 
Ragueneau et al. (2000), the stress tensor is seen as a 
superposition of an elasto-damage stress tensor and a 
sliding stress tensor. The elasto-damage part of the 
model is based on the work of Cordebois and 
Sidoroff (1979), who postulated for the definition of 
the effective stress an energy equivalence instead of 
the classical strain equivalence. Concerning the 
sliding part of the model, a new internal variable has 
been introduced, the sliding strain tensor cs. It is this 

sliding tensor which produces hysteretic effects. 
An elasto-damage effective strain £ and a sliding 

effective strain 8 depending only on the damage 
variable are defined (in these equations there are no 
sums on the indices): 

(16) 

(17) 

Then the free energy is expressed as: 

(18) 

in which, µ and A are the initial Lame coefficients. 

au is the hardening internal variable and b is a 
material parameter. The stress tensors can be derived 
as (no sums on indices): 

01/f ( )1/2 ( )1/2 CYu=p
08 

.. =2µ1-di cul-dj + 
IJ 

Based on experimental investigations, damage for 
brittle materials like concrete is principally governed 
by its tensile behaviour. To take into account this 
phenomenon, two damage tensors have to be 
introduced. The splitting between the tensile and the 
compressive damage tensor is achieved through the 



sign of the sliding strains expressed in their own 
principal directions : 

(21) 

with 

E - E+ + E. + p-1 I ") p - p-1 I ") p sij - sij sij ' Es = \Es + , Es = \Es _ 

E.'.~j = diagonal sliding strain tensor and P is the 

transformation matrix. H(x) is the Heaviside 
function. 

For each principal direction, tensile damage is 
evaluated with the same type of evolution equations 
as in the isotropic model. Compressive damage is 
only considered as a consequence of the tensile 
behaviour of the material, and is taken equal to a 
function of the state of tensile cracking in the 
orthogonal directions. 

(22) 

where f3 is a material parameter depending on the 
damaged Young's moduli for two orthogonal 
directions. A typical value for concrete is, f3 = 12. 

The sliding part of the constitutive relation is 
assumed to represent a plasticity-like behavior. In 
order to reproduce the hysteresis loops, nonlinear 
kinematic hardening is considered. The sliding 
criterion takes the following form: 

(23) 

where cr Y is the initial yield stress, X is the back 

stress, and the dissipative potential is expressed as 
follows, 

where 12 ((JS - x) is the Von Mises equivalent 

stress, here chosen as a first approximation. / 1 is the 
first invariant of the sliding stress tensor. The 
simulation of uniaxial tension is plotted in figure 7. 

Figure 8 shows a result of stiffness recovery. A 
major feature of this model is the coupling between 
damage and sliding effect. 
This constitutive relation has been developed within 
a research project on seismic analysis of structures. 
It has been shown that taking into account the 

477 

~ 1,5 
~ 

6 
Ul 
Ul 
~ 

~ 
0,5 

0 
0 2 3 4 

strain (10-4) 
6 

Figure 7: Tension response (after Ragueneau et al. 2000). 
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Figure 8: Unilateral effects (after Ragueneau et al. 2000). 

hysteretic response of concrete is more realistic than 
using artificial damping at the structural level. 

4.2 A general class of damage models. 

The above damage model introduces damage­
induced anisotropy since upon damage propagation, 
the elastic response of the material is orthotropic. 
Damage-induced anisotropy is a feature of the 
material response, which is necessary when it is 
subjected to complex stress states. Fi chant ( 1997) 
devised a general approach to damage-induced 
anisotropy. The simple features of the microplane 
approach (Ozbolt and Bazant 1992, Carol et al. 
1991) are combined with the approximation of 
damage surfaces, in the same spirit as in Ladeveze's 
approach (Ladeveze, 1983). 

The effective stress denoted as <J~ is introduced 

according to the following definition: 

rr'.. = c~ E or (J
1
. = C.0 (c*)-l (J (25) 

I) ljk/ kf I} ljkf kflllll lllll 

Let us define now the relation between the stress and 
the effective stress along a finite set of directions 
denoted by unit vectors ii: 



a= (1- d(ii) )np~nj , 

3, 2 (26) 
r=(l-8(ii)) Ii(a~nj-ha~1n1 )n;) 

i=l 

where a and r are the normal and tangential 
components of the stress vector respectively. Two 
damage surfaces are introduced: 

where d(ii) and 8(ii) are scalar valued quantities 
which define the influence of damage on the relation 
between the effective stress vector and the stress 
vector. The basis of the model is the numerical 
interpolation of these damage surfaces. Damage 
coefficients are known for a finite set of directions, 
and interpolated between them. The stress is the 
unique solution of the virtual work equation: 

f d h * 4n * m aii sue that 't!cu 3 aucu = 

(28) 

where .Q is a unit sphere. The simplest 
approximation, which does not yield isotropy, 
corresponds to an ellipsoidal damage surface: this 
surface is characterised by three directions and by 
the values of three damage scalars di along these 

directions. The material behaviour is orthotropic 
when d1 -:/= d2 -:/= d3 • The principal directions of 

orthotropy are those of the damage surface. 
The damage surface is initially a sphere of radius 

1 (d(ii) = 0). For the isotropic and orthotropic 
damage models, the evolution of damage is 
controlled by the same loading surface f: 

f (ii)= iisii - sd - X(ii) (29) 

where X is a hardening - softening variable which is 
interpolated in the same fashion as the damage 
surface (i.e. as a sphere or an ellipsoid). The 
threshold of damage is given by the strain cd. The 

evolution of the damage surface is defined by the 
following set of equations: 

if !(ii*)= 0 and ii* eii* > 0 

{

d(ii*) =a exp(-a(ii* en' - cd )ii* En* 
then 

i< ii* J =ii* eii* 

else d(ii*) = 0, j(ii*) = 0 

(30) 

where a is a model parameter. Note that the vectors 
ii* are the three principal directions of the 
incremental strain. Since the principal directions if 
the incremental strains are not necessarily those of 
the total strain, rotation of the principal axes of 
damage is naturally obtained. 

When the loading history is more complex, 
elasto-plastic coupling and damage deactivation can 
be incorporated in this damage model (Fichant et al. 
1999). Figure 9 shows a typical uniaxial 
compression-tension of this anisotropic model. 
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Figure 9: Uni axial tension-compression response of the 
anisotropic model (after Fichant et al. 1999). 

4. 3 Damage and smeared crack models 

Historically, smeared crack models have been 
developed for modelling concrete fracture fifteen 
years before continuous damage models started to 
become popular. In smeared crack models the 
directionality of the material decohesion is a 
fundamental characteristic, which was not included 
into the first damage models (such as the simple 
damage model reviewed in section 2). On the other 
side, most damage models were cast in such a way 
that rate independent plasticity and viscoplasticity 
could be easily coupled to damage, thus expanding 
their field of applicability to cases where cracking is 
not the single dissipative phenomenon in the 
material response. In this respect, it should be 
underlined that continuous damage theories 
benefited from a large bulk of research results in the 
field of composites, metal alloys and ceramics which 
encompassed the quasistatic response of the material 
but also fatigue and tertiary creep (Lemaitre, 1992). 

As we saw in the previous two damage models, 
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induced anisotropy is almost a settled issue in 
damage modelling. At least, one knows how to 
model it. Then it is nat{1ral to relate these damage 
models to smeared crack models (de Borst and 
Gutierrez, l 999). 

In the latter model, the material response is 
defined in a local coordinate system ( n, s ). Direction 
n is the normal to the plane in which the greatest 
positive normal strain denoted as £

1111 
is found. In the 

( n,s) system, the secant stress-strain relation is: 

a11,s = D;;""811.s (31) 

with all,S = [a/Ill ass a/IS r·, £11,S = [ £1111 E,\'S £/IS ]T, 
and the secant stiffness D;;", is 

(l-d1)E (l-d1)vE 
0 

1- (1- d
1 
)vz 1-(l-d

1
)Vz 

D;; .. ,= 
(l-d1)vE E 

0 (32) 
1-(l-d

1
)Vz 1- (l-d

1
)Vz 

0 0 (l-dz)G 

where d1 and dz are two damage parameters. 
(1- dz) is the degradation of the shear stiffness G 
and can be related to the shear retention factor in 
traditional smeared crack models. The evolution of 
these two damage parameters is defined with the 
help of a loading function in the ( n, s) coordinate 
system : f(£

1111
,K) = £

1111 
- K and the appropriate 

Kuhn - Tucker conditions. d1 and dz are functions 
of the history variable K, same as in the other 
damage models. 

If we introduce ¢ as the angle between the ( x, y) 
coordinate system and the ( n, s) coordinate system, 
the strain and stress components in the two systems 
can be related as follow: 

where ~(¢) and Ta(</J) are the appropriate 

transformation matrices. The secant relation in Eq. 
(31) becomes: 

(34) 

This equation, and the loading function f(E,
111

,K) 

incorporate the fixed smeared crack model and the 
rotating crack model as well. The difference is that 
in the fixed crack model the angle ¢ is constant 
whereas in the rotating crack model, the coaxiality 
requirement enforces that the n-direction is always 
the major principal strain direction. 

As we can see, smeared crack models are indeed 
damage models, with two damage coefficients and 
some rule upon which the principal directions of 
damage may change. In the fixed crack model, the 
principal directions of damage are fixed, in the 
rotating crack model, they rotate according to the 
condition of coaxiality. The fundamental difference 
with the anisotropic damage model devised in 
section 4.1 is that damage variable does not have 
necessarily to be a tensorial expression. 

There is, however, a similarity between the above 
formulation of the smeared crack model and 
microplane-based damage models. The integral 
which defines the overall stress in the microplane 
model, is the same as in the model by Fichant (Eq. 
28). This integral can be transformed in order to 
arrive to a format which is very similar to the 
multiple fixed crack model: 

where w" is a weighting factor. 

5 NON LOCAL AND GRADIENT DAMAGE 

We turn now attention to the non local 
generalisation of damage models. It is now 
established that non locality, in a gradient or integral 
format, is mandatory for a proper, consistent, 
modelling of fracture. It avoids the difficulties 
encountered upon material softening and strain 
localisation. Within a single approach, it 
encompasses both crack initiation (for which 
continuum models are very well fitted) and crack 
propagation (for which discrete fracture approaches 
have been developed). 

5.1 Nonlocal damage model 

Consider for instance the scalar damage model in 
which evolution of damage is controlled by the 
equivalent strain e introduced by Mazars. The 
principle of nonlocal continuum models with local 
strains is to replace e with its average (Pijaudier­
Cabot and Bazant, 1987): 

- 1 -E(x) = lfl(s)E(s + x)ds 
V,.(x) 

with V,.(x) = f lfl(s)ds (36) 
Q 
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where Q is the volume of the structure, v;.(x) is the 
representative volurl}e at point x, and lfl(s) is the 
weight function, for instance: 

lfl(s) =exp(- 411~112) 
[c 

(37) 

le is the internal length of the non local continuum. 
8 replaces the equivalent strain in the evolution of 
damage. In particular, the loading function becomes 
f(£,K) = £ - K. It should be noticed that this model 
is easy to implement in the context of explicit, total 
strain models. Its extension to plasticity and to 
implicit incremental relations is awkward. The local 
tangent stiffness operator relating incremental strains 
to incremental stresses becomes non symmetric, and 
more importantly its bandwidth can be very large 
due to non local interactions. This is one of the 
reasons why gradient damage models have become 
popular over the past few years. 

5.2 Gradient damage model 

A simple method to transform the above non local 
model to a gradient model is to expand the effective 
strain into Taylor series truncated for instance to the 
second order: 

- - ae(x) a 2e(x) s2 

s(x + s) = s(x) +--s +--
2
--+ ..... (38) 

ax ax 2! 

Substitution in Eq. (38) and integration with respect 
to variable s yields: 

(39) 

where c is a parameter which depends on the type 
of weight function in Eq. (39). Its dimension is L2 

and it can be regarded as the square of an internal 
length. Substitution of the new expression of the 
nonlocal effective strain in the non local damage 
model presented above yields a gradient damage 
model. Computationally, this model is still delicate 
to implement because it requires higher continuity in 
the interpolation of the displacement field. This 
difficulty can be solved if an implicit format of the 
gradient damage model is used. Eq. (39) is replaced 
with 

(40) 

Here, the definition of the non local equivalent strain 
is implicit. It is the solution of a Fredholm equation. 
As shown by Peerlings et al. (1996), Eqs (39,40) are 
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equivalent, but the implicit form is in fact an exact 
representation of the integral relation devised by 
Pijaudier-Cabot and Bazant, provided an exponential 
weight function is used. Gradient damage models 
have also been devised differently. Fremond and 
Nedjar (1993) started from the principle of virtual 
work adding the power of internal forces involving 
higher order terms. A more recent approach, inspired 
by the mechanics of porous materials, was proposed 
by Pijaudier-Cabot and Burlion (1996). 

This implicit equation which defines the nonlocal 
effective strain as a function of the local effective 
strain is easy to discretise in a finite element scheme. 
The implementation of the gradient damage model 
becomes in fact similar to the implementation of a 
thermomechanical (local) model in which the 
nonlocal effective strain replaces the nodal 
temperatures. 

5.3 Extension to anisotropic gradient damage 

In the anisotropic damage models described in 
section 4, the evolution of damage is directional. 
The evolution of damage is also directional in the 
microplane-based models and in the smeared crack 
models. The extension of the gradient damage model 
to anisotropy is quite straightforward in this context. 
For instance the loading function f(c

1111
,K) in the 

fixed smeared crack model may become: 

This extension is also straightforward in the context 
of microplane models where directions ii are 
defined arbitrarily and fixed in the analysis. For each 
direction in which damage growth is defined, a 
nonlocal variable is introduced. There are as many 
nonlocal variables as directions considered and these 
variables are interpolated throughout the finite 
element mesh, same as for the isotropic gradient 
damage model. The usual set of equilibrium 
equations is complemented with p x m equations 
where p is the number of directions and m is the 
number of damage variable per direction (Kuhl et 
al., 1998). 

For the orthotropic damage model proposed by 
Fi chant et al. ( 1997), three directions are considered 
only at each material point. The directional 
distribution of damage is reconstructed by 
interpolation in between those principal directions. 
Hence, there is the complexity that the directions 
change from one finite element to another and might 
rotate in the course of loading too. A similar 
problem is encountered in nonlocal rotating crack 
models (de Borst, 1999). Conceptually, this feature 



does not change anything in the discretisation, 
except that one has to keep track of the orientation 
of principal directions of damage. This is in fact the 
price to pay for the reduction of equations (and 
degrees of freedom) to be solved. 

5.4 Size effects in non local models 

A salient characteristic of non local models is the 
size effect. Because the constitutive relations contain 
a length scale, the response of geometrically similar 
specimens is not geometrically similar. In fact, the 
internal length scale controls the size of the fracture 
process zone (FPZ), in which micro-cracking occurs 
during failure. Hence, the size of the FPZ is a model 
characteristics, which is not dependent on the 
structure size. It follows that the ratio of the FPZ 
size to the structural size varies when geometrically 
similar specimens are tested. This variation produces 
a size effect, which may be modelled with simple 
equations proposed by Bazant (see the review by 
Bazant and Planas, 1998). 

Let us consider as an example the case of three­
point bending of geometrically similar notched 
beams. Geometrically similar specimens of various 
height D = 80, 160, and 320 mm, of length L = 4D, 
and of thickness b = 40 mm were tested by Le 
Bellego (2001 ). The length-to-height ratio is LID 4 
and the span-to-height ratio is !ID = 3. Figure 10 
shows the beam deflection response for the three 
sizes and Figure 11 shows the plot of the nominal 
stress as a function of the structure size (Le Bellego 
et al. 2000). For this computation, the non local 
integral model depicted above has been used and the 
model parameters have been fitted on these data. A 
gradient damage approach would yield exactly the 
same type of result (de Borst and Gutierrez, 1999). 

The prediction of size effects is today the most 
robust way to achieve the experimental 
determination of the internal length. In fact, it is not 
possible to predict numerically the size effect 
depicted in this paper with a local model. This kind 
of experiment provides also an indirect proof that an 
internal length ought to be introduced in the 
constitutive relations. It can be done with the help of 
a non local formulation or in the context of a 
cohesive crack model, with the same success in the 
case of simple mode 1 crack propagation. 

6 CONCLUDING REMARKS 

Damage models, smeared crack models and 
microplane models can be cast in the same unified 
framework aimed at a phenomenological description 
of progressive failure in concrete and other quasi-
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Figure 10: Fit of the non local model with the size effect test 
data (after Le Bellego et al. 2000). 
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Figure 11: Comparisons between the experiments and the 
computations on the size effect plot (upper and lower bounds 
of the fit of experimental data appear on this graph) (after Le 
Bellego et al. 2000). 

brittle materials. Already, we have shown that 
complex phenomena such as hysteretic effects, 
damage deactivation or damage induced anisotropy 
could be folded in this modelling. This framework 
needs, no doubt, to be enhanced with the 
information obtained from discrete analyses, where 
complex effects such as aggregate interlock, 
boundary effects, crack sliding, and the influence of 
the respective properties of the each component 
entering in concrete can be analysed. 

The non local extension of these advanced 
models may raise some computational difficulties, 
and to this respect the scalar damage approach still 
offers a simple but robust way to model fracture in a 
continuum description. This may be the reason why 
this simple model is very often preferred whenever 
coupled mechanical and environmental effects are 
considered in the analysis of concrete structures. A 
good understanding of damage processes induced by 
such environmental actions and their interaction 
with mechanical damage is certainly one of the 
important questions, which remain to be addressed 
in damage mechanics applied to concrete fracture. 
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