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ABSTRACT: This paper assumes that the fracture energy required to separate a unit crack area along the 
crack growth path is influenced by the width of the fracture process zone (FPZ) at that location. This as­
sumption is based on considerations of the following fracture mechanisms: friction between the uneven upper 
and lower crack surfaces during crack opening and crack growth, micro-crack interactions within the FPZ. 
Instead of using a single constant fracture energy GF for the entire projected fracture area, our present model 
assumes a bi-linear fracture energy distribution. GF is constant if FPZ is fully developed and is not influenced 
by the specimen boundary, and GF is linearly decreased if FPZ cannot be fully developed when approaching 
to the specimen boundary. That is the change in FPZ leads to the boundary or size effect on GF. The present 
boundary effect model is compared with the other size effect models and experimental results. 

1 INTRODUCTION 

The size effects on fracture energy and strength of 
concrete have been studied extensively and various 
size effect models have been proposed (e.g. Bafant, 
1984, Bafant, & Pfeiffer, 1987, Mindess, 1984, 
Nallathambi et al. 1984, 1985, Hillerborg, 1985, 
Wittmann et al. 1990, Carpinteri et al. 1994, Hu, 
1997, 1998, Hu & Wittmann, 2000, Trunk, 2000). 
Much of these efforts is directed at the explanations 
why these fracture parameters vary with the speci­
men size or from small specimens to large concrete 
structures. Only few, such as a local fracture energy 
model (Hu, 1990, Hu & Wittmann, 1992), have ad­
dressed the possibility that the fracture energy itself 
may not be constant along the crack path in a con­
crete specimen. 

In this paper, we assume a bi-linear fracture en­
ergy distribution to consider the boundary effect on 
the propagation of a fictitious crack in concrete. The 
fictitious crack with a large FPZ when approaching 
to the specimen boundary is forced to adopt itself to 
the stress field strongly influenced by the boundary. 
As a result, the FPZ size, measured by its length and 
width, is changed, leading to a variation in the frac­
ture energy consumed in the fracture process of the 
boundary region. Therefore, in this paper we use the 
concepts of "boundary effects" and "local fracture 
energy distribution" to model the common size ef­
fects on the fracture properties of concrete. 
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2 LOCAL FRACTURE ENERGY 

The specific fracture energy of concrete GF is in fact 
an average energy measurement. According to the 
RILEM recommendation (RILEM, 1985), the spe­
cific fracture GF is calculated by dividing the total 
applied energy with the projected ligament area. 
Therefore, for a specimen with a width W and an 
initial crack length a, the fracture energy GF is given 
by: 

GF = ( 1 ) f Pd<5 W-aB 
(1) 

where B is the specimen thickness, P is the applied 
load, and 6 is the displacement at the loading point. 

If a fictitious (or bridged) crack (Hillerborg, 1983) 
is used to model concrete fracture, the bridging (or 
cohesive) stress and crack opening (crb-w) relation­
ship is related to GF in the following way: 

GF = J crbdw 
0 

(2) 

where We is the critical crack opening above which, 
there is no more cohesive stress transferred. Obvi­
ously, GF has to be a material constant. And it is 
wished equation (1) points out a simple way of 
measuring GF in experiment. 

Although it is widely known the specific fracture 
energy defined by equation (1), in spite of very sim-



ple, can be size dependent, few have ever questioned 
whether Gp defined by equation (2) is size depend­
ent. To answer this" question, we will firstly have to 
see how concrete softening occurs and what contrib­
utes to the (O"b-w) relationship of concrete. 

As illustrated schematically in Figure 1, the frac­
ture process zone (FPZ) or damage zone around a 
propagating crack can be considered as consisting of 
two regions, an inner straining softening zone (Wsf), 
and an outer micro-fracture zone (W1) (Hu, 1990, Hu 
& Wittmann, 1992). The inner softening zone W.11 
contains inter-connected cracks along the aggregate 
and mortar interface, and interconnected cracks and 
defects in mortar and aggregates. The main crack 
plus a few large crack branches can be formed 
within the softening zone. The forming and com­
plete separation of the softening zone control the 
(O"b-w) relationship. The outer micro-fracture zone 
contains micro-cracks that are not interconnected, 
which do not contribute to the concrete softening. 
The fracture energy consumed in the outer micro­
fracture zone is small, and equations (1) and (2) in 
principle should determine the same specific fracture 
energy. 

Figure 1. The FPZ and discrete bridging stresses. The 
FPZ is divided into the inner softening zone and the 
outer micro-fracture zone. We is related to the width of 
the softening zone Wv(Hu & Wittmann, 1992) 

However, during concrete fracture the inner and 
outer zones widths, W.11 and w1, may vary according 
to the crack-tip stress field. As a result, variation in 
the critical crack opening We becomes inevitable. It 
becomes even more obvious when a FPZ is ap­
proaching to the boundary of a specimen, where the 
physical size of the remaining ligament and the high 
gradient stress field limit both the inner and outer 
zones, and thus their widths, W.11 and WI- Therefore, 
a smaller We and a smaller fracture energy Gp as de­
fined by equation (2) are found. This rationale leads 
to a logical conclusion that the specific fracture en­
ergy Gp defined by equation (2) can be location de­
pendent because of the variations in W.11, ~and We. 

To distinguish the fracture energy Gp defined by 
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equation (2) from that defined by equation (1), we 
use the symbol g1as the local fracture energy. 

Let x indicate a position along the crack path, the 
local fracture energy g;(x) can be related to the local 
critical crack opening We(x) and FPZ width by the 
following assumptions (Hu, 1990, Hu & Wittmann, 
1992): 

wsf (x) oc wf (x) 
wJt) oc wsf (x) (3) 

g 1 (x)= wc(x) 

Furthermore, because the fracture energy defined by 
equation (1) may be size or ligament dependent, we 
use the symbol G;(a) to account for the size effects. 
The symbol Gp is only used if the specific fracture 
energy is size independent. 

As shown in Figure 1, the fracture of a concrete 
specimen is equivalent to tensile failures of those as­
sumed thin strips (small tensile specimens) in front 
of the crack tip. The specific fracture energy g;(x) 
for the small specimen at location x is determined by 
equation (2) using Wc(x). 

According to the energy conservation principle, 
the specific fracture energy G;(a) defined by equa­
tion (1) can be determined as follows: 

l IV-a 

G1 (a)=-( -) J g1 (x)dx 
W-a 0 

(4) 

Differentiating equation (4) gives the local fracture 
energy g;(a) at the crack tip, i.e. 

g (a)=G (a)-(w-a)dGJ(a) (5) 
J f da 

---

0 

Gt/ ............ ,, 

' ' ' ' Gf(or9f) for micro-fracture --

a/W 
Figure 2. If g1 decreases monotonically along the 
ligament, G1 has to be dependent on the a/W ratio as 
observed in many experiments (Hu & Wittmann, 
1992). 



g1(a) and Gj(a) in equation (5) have completely dif­
ferent meanings. Gj(a) as defined by equation (1) is 
the averaged fracture energy determined by a speci­
men with an initial crack "a" while gj(a) is the local 
fracture energy at the crack tip ("a" becomes a loca­
tion parameter). 

It is clear from equations (4) and (5) that Gj(a) = 
constant = GF, if gj(x) = constant. If gj(x) -j:. constant, 
G1(a) -j:. constant, i.e. size or ligament effects are ob­
served. Figure 2 shows schematically that if gj(x) 
decreases when approaching the boundary at the 
later stage of fracture, Gj(a) is indeed ligament or 
initial crack length dependent. As normally Gj(a) 
defined by equation (1) is measured for various a/W 
ratios, the local fracture energy distribution gj(x) can 
be determined by equation (5). 

3 SPECIMEN SIZE EFFECT ON FRACTURE 
ENERGY 

It has been confirmed by many researchers (Bafant 
& Lin, 1988, Hu, 1990, Hu & Wittmann, 1992, 
Otsuka et al. 1998) that the FPZ width was substan­
tially decreased when the crack is approaching to the 
back surf ace of a specimen. The maximum FPZ 
width is established when the crack is far away from 
the boundary. And if a specimen is large enough, 
there exists a region the FPZ width is relatively con­
stant. 

To simplify the previous local fracture energy 
analysis (Hu, 1990, Hu & Wittmann, 1992), a bi­
linear function can be assumed for gj(x), as shown in 
Figure 3. Figure 3a displays a specimen with the 
width Wand an initial crack size "a". A Cartesian 
system with its origin at the crack tip is attached to 
the specimen to assist the analysis. The bi-linear 
function consists of a horizontal line with the value 
of GF and a descending line that reduces to zero at 
the back surface of the specimen. The intersection 
of these two straight lines is defined as the transition 
ligament a1 *, a parameter depending on both the 
material properties and specimen geometry. For a 
specimen with a ligament size (W-a) larger than the 
transition ligament a/, gj(x) is given by: 

{

GF x<W-a-a; 

g1 (x)= G [ 1 x-(w-a-a;)] >w- *(6) 
F • x _ a a1 

a, 

If (W-a) is smaller than the ligament transition 
length a/, the first function in equation (6) disap­
pears. Substitute equation (6) into (4), the size­
dependent specific fracture energy is obtained, 
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W-a >a; 

I ~ 

Gj(a!W) I ~ 

~==%~·---------------------------------------------j-r_--_---_----------------------7,J 1 
~~ ~ 

--=a-1---- u:i 
a w 

(a) 

t;o t========--1~ 
.... 
0 

r$' 

a w 
(b) 

Figure 3. The distribution of fracture energy ( G1 and gf) 
along the ligament of a fracture mechanics specimen 

(7) 

It is clear from equation (7) that (W-a) has to be 
much larger than the transition ligament a1 * to avoid 
the ligament or size effect. Since the size parameter 
"W' is often used when the specimen size effect on 
the fracture energy is considered, equation (7) can be 
rewritten as: 

l ( 1 a; /w J I */ GF 1--·--- 1-a W>a1 W 
G 

1
(.!!:_J = 2 1-a/W (8) 

W G .L (l-a/W) 1-a/W ~ a*/w 
F 2 a; /w ' 

Equations (7) and (8) can be better understood 
from the sketch shown in Figure 3. If a specimen 
with a width "W' and an initial crack "a" is used to 
measure the fracture energy according to the RILEM 
standards (1985), an average value Gj(a!W) is ob­
tained. Gj(a!W) is a!W ratio dependent. Although 
the alW ratio is always used when the size effects on 
concrete fracture is considered, Figure 3 suggests it 
may not be always appropriate. For the convenience 



of discussion, we assume for the time being that the 
transition li&ament a/ is constant. If W >> a/, and 
(W-a) >> a1 , Gj(a!W) = constant = GF. But for the 
same large specimen (W >> a/), the size effect is 
still possible if (W-a);::::; a/. That is the boundary ef­
fect exists, and it is not enough to consider only the 
absolute physical size W of a specimen. 

As shown in Figure 3, if we change the initial 
crack ~ength .from "a" to "W', a Gj(a) or Gj(a!W) 
curve 1s obtamed, showing the ligament effects on 
the fracture energy - a phenomenon has been fre­
quently observed in experiment. 

From Figure 3, we know the upper limit of 
G/a!W) is the size independent fracture energy GF. 
Figure 3 also tells us that testing of very large con­
crete specimens is not necessary, because GF can be 
worked out f~om the size dependent Gj(a!W) as long 
as (~-a): a1 . That is the key assumption and major 
contnbutlon of the current bi-linear local fracture 
energy model. 

4 ANALYSIS OF EXPERIMENTAL 
OBSERVATIONS 

4.1 Fracture energy of a mortar by wedge splitting 
test 

We chose the following example to illustrate the ap­
plication of equations (6) to (8). 
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: G1 (a/W)=36.24 · exp{-l.63(a/W)3842
} 

0.5 0.7 0.9 

a!W 

Figur~ 4. The comparison of the predictions from 
equat10n (8) and the best fit with the measured 
fracture energy data given in ref. (Hu, 1990). 

Figure 4 shows the fracture energy measurements 
of a fixed size W, but with various a/W ratios 
method (Hu, 1990, Hu & Wittmann, 1992). Clearly, 
the fracture energy of the mortar with the maximum 
sand. s~ze ?f 1 mm tested under the wedge splitting 
cond1t10n 1s not constant. 

Hu and Wittmann used the following two func­
tions to curve-fit their data, 

G 1 (a/W)=36.2 · exp{-1.63(a/W)
3
·
84

} (9) 
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and 

G1 (a/W)=43.88-~ a/W <0.7 1-a/W (IO) 

Equation (9) is also shown in Figure 4. 

By applying equation (7) or (8) to these measured 
G1 data, the size-independent fracture energy GF and 
the transition ligament a/ are determined to be 45.71 
Nim and 46 mm, respectively. The predicted GF is 
in a good agreement with 43.88 Nim given in the 
earlier studies (Hu, 1990, Hu & Wittmann, 1992). 

The predictions using the estimated parameters 
GF of 45.71 Nim and a/ of 46 mm, are plotted i~ 
Figure 4 to compare with those measured and best 
fitted G1 values. It is found that the prediction using 
equation (8) is superior to the best fit given by equa­
tion (9). Particularly, at high alW ratios, this equa­
tion gives a correct physical trend that has been well 
documented, i.e. fracture energy required to break a 
ligament is reduced to zero when the notch tip ap­
proaches the back surface of the specimen (e.g. 
Cotterell & Mai, 1996). 

By substituting equations (9) and (10) into equa­
tion (5), two g1functions can be obtained as 

g 1 (a/W) = 36.2 · exp[-1.63(a/W)
3

'
84 

]x 

{1+6.26(a/W)2'8
4
(1- a/w)} 

and 

(11) 

gf (a/W) ~ {i~;9s-115.6(a/W) :;: ~ ~:~ (1 2) 

gj(a!W) function from the present study is calculated 
by setting x = 0, GF = 45.71 Nim and a/= 46 mm in 
equation (6), 

(a/W)-{45.71 a/W~0.744 
g 1 - 178.71(1-a/W) a/W > 0.744 

50 ..-------------------

- - - - - - - - - - ::------=-.if - - - - - -"'~,' ~3) 

40 ----r--------- Eq. (12) '<~~' 

;;;; 20 

S 30 Eq.(11) '~~' 
~ '• ,, 

\ 

'\ ,, 
10 \' 

0 '----'------1-_---1 __ __,_ __ ___)j 

0 0.2 0.4 0.6 0.8 

a!W 

Figure 5. The gf curves predicted by using these two best 
fit equations, and the present model. 

(13) 



The g1 predictions from these three equations are 
plotted in Figure 5. It can be seen here that the 
maximum gf value of equation (11) is significantly 
smaller than the size-independent Gp, which is dif­
ferent from the definition of the parameter (Hu & 
Wittmann, 1992). Both equations (11) and (12) do 
not tend to zero when approaching the back free sur­
face. On a contrast, the prediction from equation 
(13) satisfies both conditions. 

4.2 Fracture properties of concrete by 3-point 
bending test 

Nallathambi et al (1984, 1985) completed a seties of 
fracture mechanics tests on concrete with different 
mixes using 3-point bending method. Their obser­
vations showed that while many factors such as ag­
gregate texture and water/cement ratio conttibute to 
fracture energy, specimen geometry played a domi­
nant role in determining the fracture energy or frac­
ture toughness value. Their experiments clearly 
showed that the ratio of specimen depth W to span 
had a significant effect on the fracture energy while 
other conditions are identical. Therefore, here a set 
of fracture energy data of 20 mm mix with identical 
depth-to-span ratio of 1/6 are chosen to compare 
with equation (8) as shown in Figure 6. The size­
independent fracture energy Gp and transition liga­
ment length a1 * calculated from the results of these 
four groups of specimens with depths of 150, 200, 
250 and 300 mm are listed in Table 1. 

Table 1: Estimated specific fracture energy GF and ligament 
transition length a1 from [19] for the beams with different 
depths. 

W(mm) GF(Nlm) a1· (mm) 
150 129.5 80.6 
200 139.6 106.7 
250 134.1 117.9 
300 129.0 131.4 

The predictions based on the parameters in Table 
1 are plotted in Figure 6, and show a good agree-
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Figure 6. The comparison of the predictions from 
equation (8) with the measured fracture energy data 
given in refs. (Nallathambi et al. 1984, 1985). 
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ment with the experimental data. The largest differ­
ence between the predicted curves occurs at around 
a!W = 0.5, and these curves come closer when a!W 
moves away from this value. This is consistent with 
the physics behind these curves as all these curves 
will tend to zero when approaching the back bound­
ary, and to the Gp when crack size is rather small. 
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(a) 
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0 100 200 300 400 
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Figure 7. The size-independent fracture energy GF and the 
transition ligament a1 • as function of specimen depth W, 
predicted using equation (8). 

To clarify the influence of specimen size on the 
fracture mechanics parameters in equations (7) and 
(8), the predicted Gp and a/ values are plotted 
against beam depth in Figure 7. It can be clearly 
seen that the specific fracture energy Gp calculated 
by equation (8) remains constant or size independent 
though the transition ligament a1 * varies quite a lot 
for the tested specimen size range. Therefore, the 
fracture energy Gp of the concrete is determined as 
133 Nim by averaging the four values. 

The size influence on the ligament transition 
length a1 * is in fact the size influence on the FPZ as 
previously discussed. It is quite possible that the 
ligament transition length a/ will reach to a maxi­
mum value, above which it is a size-independent 
matetial constant if Wis further increased. 

Substituting Gp of 133 Nim and different a/ val­
ues into equation (6), the g1 curves for different 
beam depths can be obtained as plotted in Figure 8. 



140 
120 

// -,--:- -1 
/; 

100 //'' ~ !I !i !i ]' 80 1/ ..... 
'/;' II b / ~ 01 in, 01 

...... 60 N N
1 

C'1 

b-0 !/ I 

40 
20 / 

0 

0 100 200 300 400 

Distance to Back Surface (mm) 

Figure 8. The gf curves for the concrete beams with different 
depths. 

It can be seen here that although the transition liga­
ment a1 * increases with the beam depth, the region of 
the maximum fracture energy Gp quickly becomes 
dominant contribution to the Gj(a/w) measurements. 

5 FURTHER DISCUSSIONS ON BOUNDARY 
EFFECTS 

The bi-linear local fracture energy model presented 
in this paper is based on the previous local fracture 
energy (Hu 1990, Hu and Wittmann 1992). Both 
models are based on the consideration of proportion­
ality of the local fracture energy to the FPZ width. 
However, the current bi-linear local fracture energy 
model has a clearer physical basis by introducing the 
transition ligament length a1 *. This allows the direct 
evaluation of the size independent fracture energy 
Gp from the size dependent fracture energy results. 
More important, the introduction of the transition 
ligament length a1 * has helped us to identify that the 
normal size or ligament effect is actually induced by 
the boundary effect. 

The back foundary of a specimen eases the 
stresses in its vicinity, and therefore, reduces the 
FPZ width. As a result, the local fracture energy de­
creases rapidly when approaching the back surface. 
The extent of the region where the FPZ is perturbed 
by the back boundary is dependent on both the mate­
rial properties and specimen geometry. 

Because of the perturbation of back free surf ace 
on the g1 distribution along the ligament, the fracture 
energy G1 exhibits size effect behaviour. The G1 
value is dependent on the position of the crack tip 
related to the back boundary. When the distance of 
the crack tip to the back free surface is comparable 
to the transition ligament a1 *, the back boundary­
perturbed gf contributes significantly to the G1. As a 
result, the G1 value is significantly less than the size­
independent Gp. On other hand, when the crack tip 
is very far away from the back surface, the contribu­
tion of the perturbed gf distribution is negligible, and 
the measured G1 will be very close to the size inde­
pendent Gp. 
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In the previous studies, Hu and Wittmann (Hu, 
1998, Hu & Wittmann, 2000) investigated the size 
effect on the fracture properties of a large plate with 
a finite crack and proposed an asymptotic solution to 
describe the dependence of specimen strength on the 
crack length, 

(]' = f1 
N ~l+a/a: 

(14) 

where aN is the nominal strength of the specimen 
and.ft, material tensile strength. a* 00 is defined by the 
intersection of the maximum tensile stress and linear 
elastic fracture mechanics (LEFM) criteria, and is 
referred to as the reference crack size. The reference 
crack size a* 00 represents an ideal brittle/ductile 
fracture transition. 

For the large plate case, the crack size a repre­
sents the distance of the crack tip to the specimen 
front free surface. Equation (14) indicates that when 
the distance of the crack tip to the front boundary is 
comparable to the a* oo, the specimen strength will 
subject to the boundary effect. When the crack tip is 
very far away from the front boundary, the LEFM 
criterion prevails and the specimen strength is 
mainly determined by its fracture toughness K1c. 
This analysis indicates that the size effect in the 
fracture of the large plate is also a (front) boundary 
effect phenomenon. Therefore, by proposing the 
current boundary effect mod and concept, it is possi­
ble to develop a general fracture mechanics model to 
cover various size/ligament effects on concrete 
fracture. 

6 CONCLUSIONS 

This paper explains the fundamental difference be­
tween equations (1) and (2). While equation (1) rep­
resent an averaged fracture energy, equation (2) 
really indicates a local fracture energy. The Gp val­
ues are equal only if the local fracture energy can 
remain constant for most of crack path. 

As the previous local fracture energy model, the 
current paper also assumes that the local fracture en­
ergy will vary when the development of FPZ is af­
fected. By introducing the concept of boundary ef­
fects and bi-linear local fracture energy distribution, 
the size or ligament effect on the fracture energy of 
concrete is explained. The important parameter is 
the transition ligament length a1 • 

The bi-linear boundary effect model, equation (7) 
or (8), also shows that the absolute physical size 
measurement W is not sufficient in explanation of 
the size effect. This is because the boundary effect 
(and thus the size effect) still exists if (W-a) :::::; a/, 



even if W >> a/. This clearly demonstrates the sig­
nificance of a//(W-a) in size effects of concrete 
fracture. 
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