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ABSTRACT: Concrete is a material whose performance is governed by the subtle interaction of its cohesive 
and frictional constituents. Since the theories of plasticity, damage mechanics, and fracture mechanics cannot, 
by themselves, capture both of these phenomena, a novel constitutive model is proposed which combines the 
theories of plasticity and damage mechanics in a multi-surface formulation. Synthesis of these two constitutive 
concepts describes not only the hardening/softening behavior of concrete under compressive loading, but also 
the decrease of material strength and stiffness under tension. The characteristics and behavior of the concrete 
model are presented through performance studies of specimens under monotonic and cyclic loading in tension, 
compression, and shear. 

INTRODUCTION 

The objective of this paper is to present a novel con­
stitutive concept for concrete, that merges the advan­
tages of damage mechanics and plasticity into one 
formulation. Concrete loaded in tension experiences 
the formation of microcracks due to loss of cohesion 
between the concrete aggregate and matrix. This de­
cohesion results in a reduction of both strength and 
stiffness on the macroscopic material level. Damage 
mechanics captures not only loss of material strength, 
but also deterioration of the material stiffness. On the 
other hand, concrete loaded in compression is much 
more ductile than in tension. The inelastic hardening 
response up to peak is followed by a ductile soften­
ing response if the confining pressures are low. Under 
high confinement the initial elastic material stiffness 
degrades only little in the pre-peak response regime. 
Thus plasticity provides a natural formulation to cap­
ture the degradation of frictional strength of concrete 
and the so-called Reynolds effect, the dilatant behav­
ior of materials when subjected to shear. 

The proposed constitutive model uses a two-surface 
damage/plasticity formulation to capture these very 
different responses under tension and compres­
sion. The damage formulation is a Rankine-type 
anisotropic damage model, based on the Pseudo­
Rankine anisotropic damage model of Carol et al. 
(2001) . The plasticity formulation is a parabolic ex­
tension of the classic two-invariant model of Drucker 
and Prager (Drucker and Prager 1952). To allow for 
interaction between the two inelastic processes, both 
models are formulated in terms of the effective stress 
and strain in damage space. Since it is assumed that 
the material stiffness degrades due to tensile load­
ing only, stiffness recovery/degradation is controlled 
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through the use of projection operators which modify 
the damage tensor. At the intersection of the damage 
and plasticity surfaces the solution is attained by en­
forcing consistency for both surfaces in order to deter­
mine which surface(s) is (are) activated by the current 
loading condition. 

2 INDEPENDENT DAMAGE AND 
PLASTICITY FORMULATIONS 

2.1 Anisotropic damage model of Rankine-type 

For the description of elastic degradation a Rankine­
type anisotropic damage model is adopted, which has 
been recently proposed in Carol et al. (2001). It uses 
second-order damage tensors to express direction­
dependent material damage. The damage tensors are 
used to define the relation between the externally 
measured nominal stress and strain and the effective 
stress and strain inside the region of microcracking. 
The onset and progression of material degradation is 
based upon the strain energy associated with the ef­
fective stress and strain. The essential aspects of the 
model are summarized in the following section. 

2.1.1 Nominal/effective stress-strain relations 
Material degradation may be thought of as the av­
erage effect of distributed microcracking. Effective 
stresses and effective strains are those experienced by 
the material skeleton between microcracks. In con­
trast, stresses and strains observed externally are the 
nominal stresses and strains. The relations between 
nominal and effective stress and strain are established 
by the damage variables and their evolution laws. 

In this formulation, anisotropic damage is repre­
sented by a second-order damage tensor. This can be 



for example the traditional damage tensor Dij which 
varies from 0 to bij or, more conveniently, the integrity 
tensor <f;ij (({;ij = bij...::.... Dij), varying from bij to zero, 
or its inverse </>ij, varying from bij to oo. 

Product-type symmetrization is applied to insure 
symmetry of the nominal and effective stress and 
strain tensors, resulting in 

(1) 

where Wik is the square root of the integrity ten­
sor. If equivalence of the strain energy in terms of 
nominal and effective stress/strain is assumed (W = 
weff, w = 1/20' : €), the effective/nominal strain re­
lation takes the dual form 

(2) 

These relations and their inverses may be rewritten 
in a more convenient manner introducing the fourth 
order 'damage-effect tensor' Oiijkl: 

(4) 

(5) 

where O:ijkl is the inverse of Oiijkl· Additionally, the 
damage-effect tensor Oiijkl and its inverse may be ex­
tended to obtain expressions for the secant stiffness 
and secant compliance. For simplicity, it is assumed 
that the effective stress-strain relations are linear elas­
tic, i.e. 

(6) 

Combining these relations with those of Eqs. 4 and 5 
leads to the secant relations for the nominal stresses 
and strains: 

Substituting Eqns.3-5 into Eqn.7 and simplifying the 
equations, one finally obtains the same expression of 
secant stiffness as proposed in (Valanis 1990). 

2.1.2 Loading function and strain evolution 
To insure consistency between the damage and plas­
ticity formulations, damage is formulated in the spirit 
of plasticity. The total strain increment is thus de­
composed into elastic and degrading strain compo­
nents, E =Ee+ Ed. The boundary between the regions 
of elastic behavior and progressive damage is gov­
erned by the damage condition, Fd = Fd ( O', qd) = 0, 
where qd are the damage history variables which de­
scribe the evolution of the damage surface. The dam­
age rule and the consistency condition may be de­
rived in a manner similar to elastoplasticity, such that 
Ed= .\dmd and Fd = nd: & - Hd.\d 0 (Carol, Rizzi, 
and Willam 1994). 
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The associated loading function for the Rankine­
type anisotropic damage model is defined in terms of 
modified (principal tensile) conjugate forces y as 

Note that the initial damage surface in conjugate 
force space follows the maximum stress hypothesis 
of Rankine. The conjugate force -Yij of this formula­
tion is a second order energy tensor: 

(9) 

These forces are the conjugate variables to the 
'pseudo-logarithmic' rate of damage defined as Lij = 

2wik¢k1W1j· Both, Lij' and the conjugate force -Yij 

exhibit a number of intriguing properties. For in­
stance, the first invariant represents the elastic energy, 
-yii = ~o-ff E%ff. Lij is in general a non-holonomic 
rate (not an exact differential), while its first invari­
ant has a well defined path-independent integral L = 
Lkk/3, which is related to the principal values of the 
inverse integrity tensor: 

1( 2 2 2 ) 2 ( ) L = 3 ln ¢(l) +In ¢(2) + ln ¢(3) = 3 ln ¢(1) ¢(2) ¢(3) 

(10) 
The exponential resistance function r ( L) takes the 
form of the complementary energy, 

(11) 

Thereby the exponential rate of decay is controlled 
by L and the Mode I fracture energy per unit volume 
g1, i.e. the area under the complete uniaxial stress­
strain curve, Fig. 1. The parameter r 0 in Eq. 11 and 
Fig. 1 denotes the elastic strain energy at the peak of 
the uniaxial tension test. These simple relations may 
be obtained because the model exhibits closed-form 
solutions for loading in uniaxial tension. In analogy 
to plasticity, the evolution of damage strain is defined 
by Ed = .\dmd, where .\d is the damage multiplier and 
md the evolution direction. A similar argument can be 

a 

Figure 1: Uniaxial stress-strain curve defining r a' 9f 



made to define the pseudo-log damage rate tensor Lrs: 

(12) 

where Mrs defines the direction of damage evolution. 
For associated flow, Mrs =Nm where Nrs is the nor­
mal to the damage surface, at!;;:.). From Eqn.12 the 
inverse integrity tensor </>pq can be updated by deter­
mining its rate. 

(13) 

where Wij is the square root tensor of the inverse in­
tegrity </>ii. Once </>ij is updated, the rest of the dam­
age tensors as well as the damage-effect tensors can 
be evaluated, as well as the nominal stress and strain 
and the secant stiffness and compliance. 

2.2 Parabolic Drucker-Prager model 
The parabolic Drucker-Prager model is an extension 
of the classic two-invariant plasticity model (Drucker 
and Prager 1952). 

2.2.1 Yieldfunction 
The yield function for the parabolic extension of the 
Drucker-Prager model takes the form 

(14) 

where 11 = crkk is the first stress invariant and J 2 = 
SijSij /2 is the second deviatoric stress invariant (sij = 
crij-crkk6ij /3). The strength parameters a and f3 may 
be expressed in terms of the uniaxial tensile and com­
pressive strengths values of concrete, 

f' -f' a=-c __ t 
3 

. /3 = f~ f: 
' 3 

(15) 

2.2.2 Hardening and softening 
The parabolic Drucker-Prager yield surface defined 
by Eq. 14 expands and contracts isotropically through 
the use of hardening and softening functions. These 
functions modify the two strength parameters a and 
/3, changing the material limit point, depending on the 
magnitude of the plastic strains €p. The yield function 
then becomes Fp(a, Ep) = ahsl1 + ]2 - kc/3 where 
k is the hardening parameter, (k 0 < k < 1.0), c the 
softening parameter, (1 ~ c ~ c0 ), and ahs the mod­
ified a parameter for hardening/softening, defined by 
ahs =kc~(!~ - ff). 

The hardening function adopted for the parabolic 
Drucker-Prager model was originally outlined by Etse 
et al. (Etse and Will am 1994) in the context of their 
three invariant Extended Leon model. It defines the 
hardening parameter evolution as 

k("Ep) = h~ (1- k 0 ) ( J2hnEp - Ep) + k 0 (16) 

where Ep is the equivalent plastic strain defined by 

Ep = ft J Ep : Ep dt and k 0 defines the onset of harden-
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ing behavior. Parameter h D defines the material duc­
tility, 

h v = An (:; ) 

2 

+ B,. (:; ) + c,. (17) 

where Ah, Eh, and Ch are constants. Since hn is de­
pendent upon 11 , it is able to reflect the effects of con­
fining pressures. 

Once the material reaches peak at f ~ , it may begin 
to soften if the confining pressures are low. In this case 
the softening function is a Gaussian decay function, 
defined by 

1 
c(€/) = exp (fz;-)2 (18) ; C > C0 

Softening under plastic behavior is assumed to be 
caused by the tensile components of the plastic 
strain, represented by the equivalent tensile plastic 

strain, Ep t = ft J < €P >: < Ep >, where the McCaulay 
brackets <> extract only the tensile components of 
the plastic strains. Furthermore, Ept represents the ten­
sile plastic strains which accumulate after the material 
reaches peak, so "Ep t = 0 in the pre-peak regime. ~ in 
Eq. 18 is a scaling parameter, whiles D is the ductility 
function for softening, which determines the variation 
of softening based upon the confinement, 

sn = -4.3((crp - ryf; )/("'If;)+ 1.0) + 0.7 (19) 

where er P is the sum of the confining pressures, and 
where ry is a constant. The constants are chosen such 
that the material softens completely under unconfined 
loading and is perfectly plastic under high confine­
ment. 

3 TWO-SURFACE ANISOTROPIC 
DAMAGE/PLASTICITY FORMULATION 

3.1 Strain and stress variables 
One principal issue of the damage/plasticity combina­
tion is which stresses and strains enter the formulation 
in each part of the model. To this end, the following 
stresses and strains are defined. First, a decomposition 
of strain rate in three parts for elastic, degrading and 
plastic parts is assumed: 

(20) 

Plastic strains are irreversible in nature and can be in­
tegrated Ep f €pdt. Then the elastic-damage strain 
is introduced in the total value, €ed• as: 

(21) 

Finally, the effective counterparts of all these 
strains and stresses are introduced: 

eff eff - eff,ed eff,p (22) crij = O'.ijkiCTkl , Eij = O'.ijklEkl = Eij + Eij 

(23) 



3 .2 Stiffness recove1y 
The inverse integrity tensor ¢ij reflects the current 
state of damage due· to microcracks without distin­
guishing which microcracks may be open or closed 
under the current loading state. As suggested by Or­
tiz ( 1985) , one way of representing stiffness recovery 
due to microcrack closure consists of defining an 'ac­
tive' damage tensor, in this case, <Pi!/, based on the 
concept of positive and negative projection operators. 

The original projection operator concept was intro­
duced in the form of fourth-order tensors. For our pur­
poses, a second-order projection operator for stiffness 
recovery suffices which is defined as 

where E~~)+ are the principal tensile components of 
the elastic-damage strain and ni are its principal di­
rections. 

Using this projection operator, the active inverse in­
tegrity tensor is defined as 

where ¢kl is the total inverse integrity tensor. A few 
basic properties of the active integrity tensor may be 
identified as 

• at initial, undamaged state 

¢fjct = ¢ij = 5ij (26) 

e under triaxial tension (damage in all directions) 

(27) 

• under triaxial compression (stiffness recovery in 
all directions) 

(28) 

3 .3 Loading functions for the two-surface model 

According to the previous sections, the loading func­
tions for the damage-plasticity model may be ex­
pressed as 

(30) 

where the conjugate forces of the damage surface 
-y(ii are defined in terms of the elastic-damage effec­
tive strains, and the stress invariants in the plasticity 
surface in terms of effective stress: 

Aed 1 eff eff,ed (31) 
-yij = 2 < O"ik >< Ekj > 
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(32) 

where seff = o-eff - l/3Jfff12 . 

Likewise, plastic strains produced by the plastic 
model are interpreted as effective plastic strains, Eeff,p. 

In this way, both loading surfaces may be represented 
in the same space of effective stress, which is conve­
nient and intuitive. At this stage it is assumed that the 
resistance functions rd and r P exhibit no interaction 
between damage and plasticity. Nevertheless, while 
the two failure mechanisms are not explicitly coupled, 
they are implicitly linked by plasticity formulated in 
effective space and damage dependent upon the elas­
tic/reversible strains (which are based on the plastic 
strains). 

The resulting failure envelope for the two-surface 
formulation in plane effective stress space is shown 
in Fig. 2. The bounds of material failure are de­
fined by the inner surfaces, so damage controls in 
the tension/tension quadrant while plasticity governs 
the compression/compression quadrant. In the ten­
sion/compression regions, the damage model controls 
the response behavior as far as the intersection of the 
two surfaces. At this point, both formulations are ac­
tive, while beyond this point plasticity controls. Note 
that the surfaces pass through both, the uniaxial ten­
sile strength ff and the compressive strength f~ . 

\ 
) 
I 
'F 

/ p 

Figure 2: Plane stress envelope for the two-surface 
model 

3.4 Active suiface(s) and integration 
Plastic integration is performed using the elastic trial 
-plastic corrector scheme. If the elastic trial only vi­
olates one of the two surfaces, standard techniques 
for one surface are used. If the trial stresses violate 
both conditions Fd > 0 and Fp > 0, the program starts 
the two-surface integration algorithm, the first step of 
which is to determine the correct set of active sur­
faces. This may involve two different types of checks. 

The first type of check is to ensure whether a 'cor­
ner' situation is really reached, since this is not nec­
essarily implied by having both failure functions vio­
lated at the trial state of a large increment, especially 



if one of the surfaces lies inside the other. A condition 
as such as this is easily detected by subincrementing 
the strain step ElE and checking the failure functions 
at each subincrement. 

If subincrementation still shows that a comer sit­
uation is reached, a second type of check is applied 
to find out whether, for the specific strain increment 
prescribed, the situation is resolved with two surfaces 
active or only one (i.e. the new one activated, while 
the one initially active, deactivates). This can only be 
solved by trial and error, by assuming the set of active 
surfaces and then verifying whether it was correct, 
and if not changing the initial assumption and veri­
fying again (Carol and Prat 1995). The verification it­
self also requires two steps. For each surface assumed 
active, the consistency condition should hold: 

. fjp fjp 
ni : ir - Hi)..i = O; ni = 

0
;; Hi = - fJ)..; (33) 

Solving the linear system (or single equation) implied 
by this condition leads to the scalar multiplier(s) ,\i 
of the surface(s) assumed active. These should be all 
positive; if not, the assumption was wrong. But even 
if all tum out positive, a second check is needed. For 
the surface(s) assumed inactive, we must also verify 
that Pi ::::; 0. If not, the assumption on the active set 
was also wrong. 

In the case that either the damage or plasticity sur­
face is active, the stress state is returned to the respec­
tive surface by a standard return algorithm based on 
the bisection method. If both surfaces are active, a 
modified return algorithm is used with applies nested 
bisection algorithms to return the stress state to the in­
tersection of the damage and plasticity surfaces. Ad­
ditionally, since the consistency conditions are de­
pendent upon both the normal to the failure surfaces 
and the plastic/damage flow directions, adopting non­
associated flow rules for either damage or plasticity 
gives greater control over the activation of the fail­
ure surfaces. More details on the implementational as­
pects may be found in (Hansen 2000). 

4 PERFORMANCE OF TWO-SURFACE MODEL 
4.1 Uniaxial tension 
One of the basic principles of the two-surface formu­
lation is that damage controls the material behavior 
under tensile loading. Thus, when properly calibrated 
with the fracture energy per unit volume g 1, the model 
shows active damage in tension (Fig. 3), with good 
agreement with experimental results. As dictated by 
damage mechanics, unloading and reloading always 
occur at the current secant stiffness. 

4.2 Uniaxial compression 
While damage controls the material behavior under 
tensile loading, plasticity controls the behavior under 
compression. With the hardening and softening pa­
rameters properly calibrated, the model shows good 
agreement with experimental results under uncon-
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Figure 3: Uniaxial tension, two-surface model 

fined uniaxial compression (Fig. 4). Note that un­
der plastic behavior, unloading and reloading occurs 
elastically. Additionally, the hardening and softening 
rules are robust enough to capture concrete response 
under increasing levels of confinement (Fig. 5). 

4.3 Cyclic uniaxial tension/compression 

It was previously mentioned that the presence of plas­
tic strains have a detrimental effect on the damage re­
sponse. However, this problem is resolved if damage 
is expressed in terms of the elastic strains instead of 
the total strains. This conclusion is tested by cycling 
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Figure 4: Uniaxial compression, two-surface model, 
unconfined compression 
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Figure 5: Uniaxial compression, two-surface model, 
confined compression 



a uniaxial tension/compression load, which produces 
both degrading and plastic strains in the same direc­
tion. The results are shown in Fig. 6(a). As shown, 
damage controls the response under tension, while 
plasticity is active under compression. While the ma­
terial unloads at the degraded secant stiffness under 
tension, the elastic stiffness is recovered when the 
material compresses, simulating the closing of mi­
crocracks. When the material cycles back to tension, 
the degraded secant stiffness is recovered, simulating 
the re-opening of the microcracks. Even when plastic 
strains are present, the material stiffness degrades at 
the boundary between compression and tension, and 
material degradation re-commences when the current 
stress reaches the previous cycle's final stress level 
(Fig. 6(b)). 

Cyclic uniaxial T/C, two-surface model 

Applied strain E 

Cyclic uniaxial TIC, two-surface model 

2 
ll10 .. 

~~-==--~~--'----'~~~~_,____~~ 

Applied strain E [ln-:'.1] 

Figure 6: Cyclic uniaxial tension/compression - (a) 
Total response, (b) Tensile stress close-up 

4.4 Equibiaxial tension/compression 

The two-surface model is also capable of capturing 
the effects of active damage and plasticity in two 
directions. Subjecting the model to equibiaxial ten­
sion and compression (Exx = -Eyy) results in active 
damage and plasticity in orthogonal directions (Fig. 
7). Note that the subsequent analyses assume perfect 
plasticity in order to detect the fundamental features 
of the combined damage/plasticity model without the 
added effects of hardening and softening. Fig. 7(a) 
shows the response in the direction of tensile load­
ing. As dictated by the two-surface model, damage 
controls the response in the tensile direction, and so 
the material loads elastically up to the damage sur­
face, at which point damage commences and the ma-
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terial strength degrades. In the compressive direction, 
the response is governed by plasticity, so the material 
loads elastically up to the yield surface, at which point 
perfectly plastic behavior commences. Additional in­
sight into this behavior may be found by observing 
the stress path in the effective stress space, Fig. 8. The 
material loads elastically up to the damage surface, at 
which point damage commences. The stress state then 
follows the damage surface until it reaches the inter­
section of the damage and plasticity surfaces. As men­
tioned, the number of active surfaces depends uppn 
n and m for both failure mechanisms, and assuming 
non-associated flow rules gives a level of control over 
the surface(s) activation. If a non-associated plastic 
flow rule is adopted, the stress state can be confined 

Equibiaxial T/C, two-surface model 

.. 0.-4 0.6 0.8 1 

Applied strain 'xx [ln-1
] 

Equibiaxial T/C, two-surface model 

1.4 
x10·• 

~~~~~~~~~~~~~~~ 

~ ~ - - -
Applied strain EYY [in-1] 

0 
x10-> 

Figure 7: Equibiaxial TIC, two-surface model, non­
associated flow - (a) xx-direction, (b) yy-direction 

Equibiaxial TIC, two-surface model 

-3 

cr•ff 

Figure 8: Equibiaxial T/C, non-associated flow -
stress path 



to the vertex of the damage and plasticity surfaces, 
shown in Fig. 8. This results in perfect damage in ef­
fective space (continuing damage in nominal space) 
and perfect plasticity in both effective and nominal 
space. If, instead, associate flow is assumed for both 
damage and plasticity, the stress path will eventually 
move away from the vertex and continue along the 
plasticity surface, resulting in the response of Fig. 9. 
In this case, the compression continues to increase as 

Equibiaxial TIC, two-surface model 

0.4 0,6 0.8 1 

Applied strain Exx [in-1
] 

Equibiaxial TIC, two-surface model 

~.~.~-L-~~_,~--'-~.~-~~.~-~~ .. ~--'--~--', 
Applied strain eyy [in-1] "'~ 

Figure 9: Equibiaxial TIC, two-surface model, associ­
ated flow - (a) xx-direction, (b) yy-direction 

the stress state follows the plasticity surface. The ten­
sile stress, however, exhibits a change from tension to 
compression as the stress state moves from the vertex 
onto the plasticity surface (Fig. 10). While this change 
in the sign of the stress in the direction of tensile strain 
seems unnatural at first, a possible explanation can be 
offered if the dilatancy of the concrete is considered. 
The dilatancy due to the compressive strains is con­
trolled by the plastic flow rule mp and prescribes dila­
tant strains and stresses orthogonal to the direction of 
compressive loading. However, the strains orthogonal 
to the compressive loading are constrained by the rate 
of tensile loading Exx· If the rate of tensile loading is 
slower than the rate of dilatancy due to the compres­
sive loading, the tensile strain rate Exx serves to con­
strain the dilatant response, which may result in com­
pressive stresses er xx. Additional information may be 
found in (Hansen 2000). 
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5 CONCLUSIONS 
This paper presented a two-surface anisotropic dam­
age/plasticity model which accounts for: 

• Damage response under tensile loading, plastic­
ity response under compressive loading. 

Equibiaxial TIC, two-surface model 

Figure 10: Equibiaxial TIC, associated flow - stress 
path 

• Stiffness recovery when moving from tension to 
compression to simulate the closing of microc­
racks. 

• Active plasticity and damage where appropriate 
in the tension/compression regions. 

Damage under tension and plasticity under compres­
sion is achieved through the use of the Rankine-type 
anisotropic damage model and the parabolic Drucker­
Prager plasticity model. Formulating both models 
in effective stress/strain space allows interaction be­
tween the two surfaces in the same space. Further­
more, damage considers the effects of the elastic 
strains, which takes into account the effects of the 
plasticity-induced plastic strains on the damage re­
sponse. Material stiffness recovery is based on the use 
of second order projection operators Pi} to form the 
active integrity tensor ¢fJt, a measure of the current 
state of material damage at the current load increment. 
Active damage and plasticity occurs when the effec­
tive stress path reaches the intersection of the two sur­
faces. The two-surface consistency condition is used 
to determine if one or both of the loading surfaces are 
indeed active. 

The performance of the model was examined by 
observing the model response under monotonic and 
cyclic uniaxial tension/compression, and monotonic 
equibiaxial tension/compression. The monotonic uni­
axial tension and compression results show that 
the model is capable of accurately reproducing the 
response of concrete under tension and compres­
sion. The cyclic uniaxial tension/compression results 
highlight the stiffness degradation and recovery re­
sponse of the two-surface model. The equibiaxial ten­
sion/compression results show the model response 
when both surfaces are active, which is directly con­
trolled by the underlying damage and plastic flow 
rules. 



Further work includes investigation into the model 
behavior at the vertex of damage and plasticity. The 
behavior at this point is highly dependent upon the 
flow directions of the two loading mechanisms, which 
strongly affects the dilatant response. Furthermore, 
compressive damage needs to be considered. Strictly 
speaking, softening under compression is due to per­
sistent microcracking, not due to plastic strains as in 
the current formulation, which leads to the concept of 
damage in compression. 
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