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ABSTRACT: A three dimensional numerical model for the composite structure of concrete is proposed. Ag­
gregates are embedded in a mortar matrix. The Interfacial Transition Zone ( ITZ) between matrix and aggre­
gates is also taken into consideration as a third phase. A finite element mesh generation of this model is real­
ised by tetrahedral elements based on Delaunay triangulation. The aggregates, following a predefined size 
distribution, are placed randomly in the specimen. An increase of the aggregate concentration is possible but 
at the expense of the topological quality of the numerical model. The shape of the aggregates is approximated 
by spheres or ellipsoids. The matrix , consisting of mortar with a maximum grain-size of 2 mm, is assumed to 
be homogeneous with effective material parameters. The interface layer surrounding the aggregates repre­
sents a weak zone and can be assigned with statistically distributed material properties. Finite elements with 
linear or quadratic interpolation functions are considered. By means of this numerical model the effective 
properties and behaviour of the composite structure, e.g. the effective Poisson's ratio, are studied as function 
of parameters of its components. Furthermore time-dependent phenomena such as drying and stresses induced 
by hygral variations are simulated. The implementation of non-linear material laws and the smeared crack 
model enable the calculation of damage and crack formation in the specimen. As a final step the mechanical 
behaviour under coupled, external mechanical and hygral stresses is mentioned. 

1 INTRODUCTION 

The determination of the effective mechanical prop­
erties of a composite material like concrete by 
means of a numerical model require the considera­
tion of at least the aggregates and the mortar matrix. 
Furthermore the implementation of the so called In­
terfacial Transition Zone (ITZ) between the aggre­
gates and the mortar matrix is more realistic, be­
cause it can be regarded as the weak zone of the 
composite (Larbi 1993). Thus, the influence of each 
of the components on the global behaviour and the 
crack propagation can be investigated. The finite 
element model as well as the analysis and the im­
plementation of the non-linear material laws, real­
ized with the ,,semi-open" MARC program, are 
shortly described. A subdivision into "Numerical 
Model" for the discretization method and "Material 
Model" for the constitutive behaviour and the statis­
tic distribution was choosen. Different numerical re­
sults obtained by the model when subjected to me­
chanical loading and time-dependent effects are 
outlined. The dependency of the analysis on the in­
troduction of the Interfacial Transition Zone and 
statistically distributed material properties are shown 
by means of one test model with fixed dimensions 
lx, ly and lz. 
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2 NUMERICAL MODEL 

2.1 Generation 

The generation of the three-dimensional numerical 
model for concrete can be subdivided into two steps. 
First, the geometric construction of the specimen in­
cluding a certain aggregate content and afterwards 
the meshing with finite elements. 

2.2 Topology of the model 

The numerical model reproduces a cubic specimen 
of mortar with randomly distributed aggregates ac­
cording to the Fuller curve. The mortar is assumed 
to be homogeneous with effective material parame­
ters. The aggregates are approximated by spheres or 
ellipsoids and their minimum diameter is 2 mm. 
These aggregates are placed successively in the 
specimen including checks of overlapping and exte­
rior spacing. This was realized by adapting an ex­
isting C++ algorithm (Slowik, Leite 1999) to the de­
velopped program. An ITZ around each aggregate 
can be added. 

2.3 Meshing and element technology 

After that the geometric model will be meshed with 
four-node tetrahedron finite elements based on the 



incremental Delaunay algorithm. The detailed back­
ground of this method was described e.g. by George 
and Borouchaki (1998). Hence, only a few remarks 
concerning typical properties and problems of the 
meshed model are described. 

After the regular surface-meshing of the outsides 
of the specimen and the surfaces of the aggregates 
the construction of the spatial mesh is realised by in­
cremental node-insertion. The criterion of an valable 
tetrahedral element is an extension of the well 
known two-dimensional Voronoi diagram and its 
dual, the Delaunay triangulation (Fig. 1). The 
method of field point insertion is more difficult as in 
two dimensions. While in two dimensions evenly 
well distributed nodes in the control space involve a 
mesh of finite elements with good shape quality, this 
is not necessary the case in three dimensions. The 
extreme case represents a tetrahedron, which fulfils 
the circumsphere criterion (Fig. 1) but its four nodes 
are coplanar. Hence, algorithmic steps have to be 
taken, so that the mesh quality does not fall below a 
special defined criterion. The regularity of the mesh 
can be defined as: 

(1) 

where the constant K is independent of the mesh and 
governs the ratio of the minimum circumference di­
ameter de and the maximum inner sphere diameter di 
(Fig. 2). As a consequence of these problems the dif­
ficulties to observe the regularity of the FE-mesh in­
creases with the complexity of the geometry and the 
control space respectively. A specimen with high 
aggregate content is much more delicate with respect 
to distorted elements. 
The convergence of the numerical solution strongly 
depends on the regularity of. th~ ~inite eleme~ts. 
Hence, the numerical model 1s limited concernmg 
the aggregate content in order to achieve acceptable 
results. Up to now, aggregate contents up to 0.4 have 
been realized. Higher contents require an extremely 
fine mesh with the usual consequences for the com­
putation time and the memory demand. 

While generating the model in the observed way 
four-node isoparametric tetrahedral elements are 
used for the discretization of the system. The inter-

4 Delaunay-tetrahedron 

\ 

I 

Figure 1: circumference criterion for a valid tetrahedron ele­
ment 
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1· 

Figure 2: Criterion for the element regularity. 

polation functions of these elements can be de­
scribed as follows: 

with the local axes ~' 11, ~ . The element stiffness 
integral is solved with the Gaussian quadrature for­
mula and one integration point. This element shows 
poor bending behaviour and can cause locking 
problems (Groen & de Borst 1997). The assumed­
strain concept offers the possibility to improve the 
element behaviour without raising the order of the 
shape functions (p-adaptivity). Thereby an enhanced 
strain field without even the requirement of C0

-

continuity is added (Simo & Rifai 1990). 
In this case the method of p-adaptivity was ap­

plied. After the mesh generation e~ch elem~nt can be 
refined according to his interpolat10n funct10ns as: 

(Fig. 3). This element has ten nodes and four Gaus­
sian integration points. The behaviour especially at 
hydrostatic pressure and for variable tangent stiff-

4 4 

3 3 

2 2 

4-node tetrahedron I 0-node tetrahedron 
Figure 3: The two types of applied tetrahedron elements 



ness matrices because of non-Hooke material law is 
improved. The additional computational cost of this 
refinement has not to be underestimated but it is 
justified in case of physical nonlinearity. 

3 MATERIAL MODEL 

3 .1 General remarks 

On displacement-controlled loading, concrete shows 
in both, the tension and the compression failure re­
gime, an after peak behaviour, the so-called soften­
ing. The tensile strength of concrete depends on the 
biaxial stress state (Kupfer et al.1969) or the triaxial 
stress state (van Mier 1984) respectively. For the tri­
axial stress state the compression strength can in­
crease up to more than three times the uniaxial value 
(van Mier 1984). The simulation of all these possible 
failure modes is a very complex problem. One ad­
vantage of the Numerical Concrete in this context is 
the fact, that comparatively simple material laws can 
be introduced on the mesolevel and the phenome­
nologically described and observed behaviour results 
from a rigorous analysis. 

3.2 The mortar matrix 

The mortar represents the cement paste including 
aggregates smaller than 2 mm. For the mortar matrix 
of the Numerical Concrete a smeared cracking 
model (Hillerborg 1983) for tension range in combi­
nation with a Drucker-Prager flow rule for the com­
pression range is used. The total strain Eij is obtained 
by adding the elastic part Eeij and the cracking or 
plastic part Ecpij: 

(4) 

The softening curve, after reaching the cracking 
strain Ecr , is modelled by an exponential function 
(Fig. 4): 

(5) 

where fct = tensile strength; Ecr = cracking strain; Etu 
= damage parameter. This function leads to less nu-

n ... linear softenin£ 
b ... bilinear sol\ening 
c ... exponential softening 

Figure 4: Numerical approximations of the softening curve 
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merical problems than the bilinear representation of 
the curve and is more realistic than the linear sof­
tening. 

As the exponential softening does not touch the 
x-axis, a limit value of the cracking strain was intro­
duced to define the zero-stiffness at this point and 
direction: 

6·G 
cmax =--} 

er fct · h 
(6) 

where Gr= fracture energy; fc1 = tensile strength; h = 
characteristical element length. 
As mortar shows a more brittle behaviour than con­
crete, the fracture energy Gr was assumed to be 0.08 
N/mm (Slowik 1995). 

The identification of the characteristic element 
length h in case of tetrahedron eleme~ts c~n n~t ?e 
well-defined. The generated mesh implies fmite 
elements with different dimensions. To simplify this 
problem the value of h is defined to the diameter of 
the maximum insphere of each element. Therefore 
there exists an integral measure for the shape of each 
tetrahedron. 

If all principal stresses are positive, the failure 
criterion corresponds to the Rankine theory. The de­
pendence of fct on negative principal stresses is con­
sidered by a linear decrease of fc1 down to 0.3 fct· 

After the development of a fictitious crack at an 
integration point, at most two further crack~ c~n de­
velop, (orthogonal fixed crack model. This is not 
quite realistic, because of the loss of symmetry of 
the element stiffness. An improvement would be the 
implementation of a threshold angle a for. the de~el­
opment of new fictitious cracks at the mtegrat10n 
point. . 

The shear retention of a degraded zone is taken 
into account by a factor ~· The dependence of the 
shear stiffness on the cracldng strain is modelled by 
a linear decreasing shear retention factor~· ~ is zero 
at the state Ecr = max Ecr· This state is equal to a real 
crack. 
A further case is the modelling of unloading during 
the softening range. According to experimental re­
sults a plastic fracturing behaviour was implemented 
(Chen et al. 1994). The degradation of the stiffness 
as function of the softening stress is modelled by a 
linear function (Fig. 5). 

,Eo 

Figure 5: Qualitative gradient of the unloading state 



The observation of typical stress-strain curves for 
concrete under compression shows three deforma­
tion segments. Roughly until 30% of fc the cr-£ be­
haviour can be regarded as linear elastic. For higher 
stresses up to 70%-80% bond cracks develop and a 
resulting stiffness degradation is observed. Until the 
peak stress fc a significant increase of the volume 
and strain takes places. The failure can be described 
as buckling and crushing. 

The applied Drucker-Prager model can be de­
scribed as follows: 

f = ,JI;+ a · ! 1 - k = O (7) 

where J2 = second invariant of the deviatoric stress 
tensor; 11 = first invariant of the stress tensor ; a, k = 
calibration factors. The initial failure surface begins 
at 30% of fc, which terminates the elastic region. An 
isotropic hardening rule defines the plastic flow until 
the crushing state has been reached. A characteriza­
tion of this strain state can be realized with e.g. the 
equivalent plastic strain: 

2 p 
t: = - t: .. 

3 I) 
e.P 

I) (8) 

where £Pij = the plastic strain tensor. 
The limit states depend on J2 and 11 (Fig. 6). The 

observed post-peak region of concrete with soften­
ing and crack band localization is not implemented. 
The released fracture energy Ge for mortar is smaller 
than for concrete. The global behavior of the speci­
men for softening in compression results from the 
interaction with the aggregates. 

.. .. "-.:.:JJ°'S 
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Figure 6: Drucker-Prager cap model in 11 J2
112 plane 

3.3 The Interfacial Transition Zone (ITZ) 

The principal material behavior is equal to the mor­
tar matrix. However the ITZ is a weak zone with 
higher porosity and lower strength than the mortar 
(Table 1). 

The thickness of the ITZ was determined to be 
0.2 mm. This value is an upper limit if compared 
with observations (Larbi 1993), but it is convenient 
concerning the meshing of the model. 
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3.4 The aggregates 

The chosen material properties of the aggregates are 
typical for metamorphic rocks (Wittmann 1994). 
However, it has to be mentioned that in normal con­
crete several types of aggregates can be found 
which may complicate the simulation. 

A summary of the mean material properties of the 
complete model is listed in Table 1. 

3.5 Statistically distributed material properties 

In order to approximate the real material property of 
concrete it is reasonable to introduce distributed val­
ues for the components. A usual method is the 
variation according to the Gaussian normal distribu­
tion. For the Numerical Concrete model such a dis­
tribution was implemented for the tension strength 
with a maximum spectrum of+/- 20%. 

Table 1. Mean material properties of the components of the 
Numerical Concrete 

Matrix ITZ Aggregates 

Young's 
modulus 15000 12000 60000 
[N/mm2

] 

Poisson's ra- 0.2 0.2 0.22 
tio [-] 
Tensile 
strength 
[N/mm2

] 

3.0 2.0 15.0 

Uni axial 
compressive 30.0 20.0 200.0 
strength 
[N/mm2

] 

Specific 
fracture en- 0.08 0.04 0.2 
ergy [N/mm] 
Coefficient of 
thermal ex- 10-5 10-5 9* 10-6 

• oansion [-] 
Thermal con-
ductivity 6.5 6.0 10.0 
[J/mm h K] 
Specific heat 2.4*10-3 2.4*10-j 2.1 *10-j 
[J/mm3 K] 
Thermal film 0.15 - "'o 
coefficient 
[J/mm2 h] 
Diffusion co-
efficient 2.0 2.2 "'0 
[mm2/h] 
Hygral film 0.5 - "'o 
coefficient 
[k2:/mm2 h] 

(Thermal properties will be used in the following 
extension of the model). 

The specific fracture energy Gr was supposed to be 
linearly dependent on the tensile strength, as can 
been shown in experiments (Slowik 1995). The 



Young's modulus can be determined according the 
CEB-FIP model code 1990 as: 

I 

(
fc1111 )% +N 

3 

0.3 
(9) 

where Eco = referenz value; fctm = mean value of ten­
sion strength; Lif = 8 N/mm2

; fcmo = 10 N/mm2
. 

4 TEST SPECIMEN 

The calculations were performed with small cubic 
specimens. The length is 10 mm and three aggre­
gates were placed into the specimens with a result­
ing aggregate content of 0.28 (Fig.7). The simulation 
can be regarded as a sort of patch test for the model. 
Variation parameters of the model are the order of 
FE interpolation functions as well as constant and 
statistically distributed material parameters. 

Limitations of the specimen size are determined 
by the computing capabilities. Figure 8 shows a 
more complicated Numerical Concrete model for 
further simulations. 

5 MECHANICAL LOADING 

The modeling of this problem can be described with 
the linearized elasticity theory as: 

Figure 7: Numerical Concrete model used for the simulations. 

Figure 8: Extended Numerical Concrete model 
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div 0-[!!_] = f in n (10) 

The constitutive equation and the boundary condi­
tions are formulated as follows: 

!!_ = Q on f'D = dQ (Dirichlet) 

(11) 

(12) 

0-[~ · !!: = fJ__ on f'N = dQ-,['D (Neumann) (13) 

For the finite element discretization the minimiza­
tion of the residual leads to the weak form: 

J.s[~: er[!!_] dV f [Y dV - fry dA = 0 (14) 
n n an 

where v = valid virtual displacements. As men­
tioned, the stiffness matrix is not constant and the 
equations are solved incrementally using the rate 
form. The stresses are computed by the Total La­
grange formulation. For large displacements and 
strains the second Piola-Kirchhoff stress tensor and 
the Green-Lagrange strain tensor are used in the 
variational formulation of Equation 14. 

After first linear elastic calculations and valida­
tions with analytical solutions had been carried out, 
uniaxial direct tension tests under displacement 
controlled conditions are now proposed. The defor­
mation towards the z-axis was increased steadily and 
the xy-surfaces are fixed in plane. 

Therefore three calculations were carried out with 
specific properties of the model as shown in Table 2: 

Table 2. Characterization of the models 

Soecimen 1 Soecimen 2 Soecimen 3 
Dimensions lOxlOxlO lOxlOxlO lOxlOxlO 
[mm] 
Aggregate 0.28 0.28 0.28 
content 
ITZ - x x 
Statistic. dist. - - x 
Prop. of the 
ITZ 

Figures 9-11 show the degradation of the three mod­
els at the same "load" level of 150% of the mortar 
cracking strain. The effective Poisson's ratio for this 
case is about 0.14. The ficticious cracks develop 
mainly in the forced displacement direction, so the 
Poisson's ratio decreases. This is analogous to the 
increase of v for uniaxial compression, because of 
the degradation lateral to the compression direction. 
As expected the degraded zones are near the aggre­
gates. The influence of the ITZ on the crack band lo­
calization developping near the limit state is consid­
erable, although in this simple case the failure region 
is obvious. 



Figure 9: Ficticious cracks in a section of the model subjected 
to direct tension of specimen 1. 

Figure 10: Ficticious cracks in a section of the model subjected 
to direct tension of specimen 2. 

Figure 11: Ficticious cracks in a section of the model subjected 
to direct tension of specimen 3. 

6 TIME DEPENDENT PHENOMENA 

6.1 Drying 

The drying process of a concrete specimen leads to 
hygral gradients from the outside to the centre. As 
the aggregates are nearly dense, the drying of the 
cement paste is hindered. The resulting moisture 
distribution is non-uniform and time-dependent. 
Drying, assymptotically reaches an equilibrum. The 
numerical simulation of this process shows the in­
fluence of the aggregate content on the drying proc­
ess and the effective difussivity. 

The governing equations of the drying process can 
be described with the second Fick's law: 

~~ -div[Q(!J_) grad [1] = Q(~,t) (16) 

where m = mass flow, h = moisture potential , D(h) 
= moisture diffusion coefficient, Q(x,t) = source 
term. 
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The boundary conditions can be subdivided into 
Dirichlet and Neumann conditions: 

fl= h(~,t) 

dh 
-A--==f(h-h) d!l - -0 

(17) 

(18) 

where equation (18) describes the moisture transfer 
to the outside. The Dirichlet condition (17) is physi­
cally not very meaningful. The initial conditions 
are: 

h:.C~, t = 0) = ll; (~) (19) 

The humidity dependence of the diffusion coeffi­
cient can be described e.g. by an exponential func­
tion. From fitting of experimental results, the diffu­
sion coefficient is obtained as: 

Q@ = a · exp(/J · h) (20) 

Hence, the variational form for the Finite Element 
Method can be described as: 

Jy dafl dV - f_yQ@ 11[1dV - f Q_ydV = 0 (21) 
n t n n 

where v = valid virtual test function. 
The coefficients a= 0.015 and ~ = 4.8 of Equation 
20 are assigned to the diffusion coefficient of the 
mortar matrix (Wittmann et al. 1989). Figure 13 
shows the experimentally determined curves for the 
diffusion coefficient. The aggregates are supposed to 
be dense. As initial condition the mortar matrix is 
fully saturated. No additional source terms are im­
plemented, so that Equation 16 describes the loss of 
humidity of the specimen as a function of time and 
the diffusion coefficient D(h). Autogenous drying is 
not taken into consideration. The calculations were 
performed on one eigth of the model, taking the 
symmetry of the specimen into consideration (Fig. 
12). Hence, the initial dimensions of the whole 
model are constant and L=20 mm. 

Four calculations without cracking have been 
carried out. First, drying of a mortar cube to an envi­
ronment with h=0.5 has been simulated. In this case 
it was assumed that five surfaces are sealed and 
drying is possible through the upper surface only. 
The moisture distribution after a drying time of 
about 2 hours in one eigth of the drying cube is 
shown in Figure 14a. The moisture potential is indi­
cated by different levels of grey. The surface is in 
equilibrum with h=0.5 while the centre is still satu­
rated (h=l). Then, aggregates have been placed in 
the mortar with three different volume concentra-



Figure 12: Eigth symmetry of the calculated drying model 

tions. One eigth of the cube with the highest volume 
concentration is shown in Figure 14b. The retarding 
effect of aggregates on the drying proces can be 
clearly seen. Based on the former simulations, the 

Figure 13: Diffusion coefficient as function of moisture content 
of concrete 

1,[J 

(a) (b) 

Figure 14: Drying of a mortar (a) and a concrete specimen (b). 

-2:' 1.0~~~~~~~~~~~~~ 
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0.0'--~~~~~--'-~~~~~~ 

0,0 0, 1 0,2 0,3 0,4 0,5 0,6 
Aggregate content 

Figure 15: Normalized moisture diffusivity in terms of the ag­
gregate content. 

relative moisture diffusivity as function of the ag­
gregate concentration has been determined and is 
plotted in Figure 15. The numerical results are com­
pared with a power function (Equ. 22) for the diffu­
sivity as function of the aggregate content. 
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D,h =D 111 ·(1-gt (22) 

where Deff = effective diffusivity, Dm = mortar diffu­
sivity, g = aggregate content, a= 1.3 - 1.7 as factor 
for concrete. Obviously, the retardation effect of the 
whole drying process depends not only on the ag­
gregate content, but also on the size distribution. 

6.2 Shrinkage 

The drying process results in a time-dependent 
moisture distribution in the composite material. As 
the moisture content decreases by ilh, shrinkage 
strains £s will occur. As a first approximation 
shrinkage of the cement-based matrix can be de­
scribed with a constant coefficient of shrinkage as: 

(23) 

As the aggregates are supposed to be dense, they 
will not undergo any shrinkage. As a consequence 
shrinkage of the mortar matrix is hindered by the 
aggregates and time-dependent eigenstresses are the 
result. 

For this simulation a coupled analysis was used. 
The resulting stresses, induced by hygral gradients, 
are calculated within each time step. The symmetry 
of the model is taken into consideration. The speci­
men is not sealed so that drying through all sides is 
possible. The shrinkage coefficient of the mortar 
matrix was chosen to be constant: as = 0.002. The 
saturated specimen was supposed to be stored at a 
constant relative humidity (RH) of 50% . The diffu­
sion coefficient as function of the the moisture con­
tent was modelled as shown in Figure 13. 

A qualitative distribution of ficticious cracks after 
a drying time of 4 hours in four sections is shown in 
Figure 16. The dark zones represent the maximum 
cracking strains. The influence of the aggregate 
content and the size distribution on the crack forma­
tion and the possible crack closure during the drying 
period will be observed in the future. Another pa­
rameter to be varied will be the elastic modulus. 

7 CONCLUSIONS 

The Numerical Concrete is a suitable tool to investi­
gate the effective properties of concrete as a com­
posite material. By systematic variation of different 
component properties, it is possible to define the in­
fluence of each of them with respect to the global 
behaviour. This advantage as compared to phe­
nomenological models for concrete is obtained at the 



expense of a complex geometrical model and the 
size limitations. 

The first observations of mechanical and time­
dependent problems lead to a wide spectrum of ap­
plications of the 3-dimensional Numerical Concrete 
model. 

8 OUTLOOK 

The evaluation of effective properties of a composite 
material like concrete requires many calculations 
with a systematic variation of single parameters. 
Furthermore, extended models (Fig. 8) will have to 
be considered in the future. 

Figure 16: Fictitious crack formation in two sections of the 
model subjected to drying shrinkage 

In the present analysis effective values have been 
chosen for the properties of the mortar matrix. In the 
future a stepwise approach will be chosen. First, 
hardened cement paste will be studied with fine in­
clusions only. The obtained effective values serve as 
properties for the matrix of mortar with coarser ag­
gregates. Step by step this procedure can be repeated 
until the diameter of the maximum aggregate is 
reached. 

The coupling of the two investigated loading 
types, i.e. mechanical load and drying shrinkage 
leads to a more realistic characterization of creep, 
shrinkage and failure under sustained load of con­
crete. Strains and crack formation induced by 
shrinkage and different additional mechanical load­
ing will be investigated in detail. 
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