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ABSTRACT: In the present paper the microplane model for concrete like materials is discussed. In the model 
the material is characterized by a relation between the stress and strain components on planes of various ori­
entations. To realistically model quasi-brittle materials under compressive load, for each microplane the total 
strain tensor has to be decomposed into the normal (volumetric and deviatoric) and shear strain components. 
It is shown that for dominant tensile load the decomposition of the normal microplane strain together with the 
fact that the tensile strength is for an order of magnitude smaller than it's compressive strength leads to unre­
alistic model response. To keep the conceptual simplicity, the model is improved in the framework of the 
ldnematic microplane theory, however, the ldnematic constraint is relaxed. It is demonstrated that the im­
proved model is able to realistically simulate complex fracture mechanisms of materials with and without ini­
tial anisotropy. 

1 INTRODUCTION 

Traditionally, the macroscopic models are formu­
lated by total or incremental formulation between 
the CJij and eu components of the stress and strain ten­
sor, using the theory of tensorial invariants (Willam 
and Warnke, 1974; Ortiz, 1985). In the framework 
of the theory, there are various possible approaches 
for modeling of concrete, such as plasticity, plastic­
fracturing theory, continuum damage mechanics, 
endocronic theory and their various combinations. 
Due to the complexity of the concrete, presently ex­
ists no model based on the stress and strain tensor 
and their invariants which is capable to realistically 
predict the behavior of concrete, not only for the 
three-dimensional monotonic loading, but for the 
general three-dimensional cyclic loading as well. For 
instance, the invariant type of the models have diffi­
culties with cotTect modeling of concrete expansion 
at triaxial compressive load, which in some applica­
tions governs the failure mechanism and is a conse­
quence of cracldng (discontinuity). Such models are 
based on the continuum mechanics and are generally 
not capable to simulate complex stress-strain states, 
which involve cracldng, using only a few available 
invariants. Moreover, based on the plasticity type of 
the flow rules, which is in these models most com­
monly used, it is difficult to model complex three­
dimensional cyclic response of concrete. These, as 
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well some other drawbacks of the constitutive laws 
based on the theory of tensorial invariants is main 
motivation for the use of the microplane theory as an 
alternative approach for macroscopic modeling of 
concrete. 

The advanced ldnematic constraint version of the 
microplane model for concrete was proposed by 
Bafant and Prat (1988) and later extended to general 
cyclic form with the rate sensitivity by Ozbolt and 
Bafant (1992). For dominant tensile damage (tensile 
softening) the model exhibits physically unrealistic 
behavior which is manifested by lateral expansion. 
To improve the model, different approaches have 
been used so far (Carol & Bafant 1997, Bafant et al. 
2000). Principally, there are two possibilities to do 
so: (1) Imposing the static constraint approach at the 
microplane level or (2) keeping the ldnematic con­
straint approach but modifying the microplane strain 
components by adopting additional constraints. The 
first approach would mean that the microplane stress 
components are calculated as the resolved compo­
nents of the total macroscopic stress tensor. Because 
of the non-unique definition of the stress tensor in 
softening materials it is generally difficult to work 
directly with the static constraint approach. There­
fore, in the present paper one of the possible im­
provements which is based on the relaxation of the 
ldnematic constraint is discussed. 



2 MICROPLANE MODEL 

2.1 General 

The microplane model is a three-dimensional mac­
roscopic model in which the material is character­
ized by a uniaxial relations between the stress and 
strain components on planes of various orientations 
(microplanes - monitoring directions). In the model 
the tensorial invariance restrictions need not be di­
rectly enforced. They are automatically satisfied by 
superimposing the responses from all microplanes in 
a suitable manner. The basic concept behind the mi­
croplane model was advanced by Taylor (1938). 
Later the model was extended by Bafant and co­
workers for modeling quasi-b1ittle materials which 
exhibit softening (Bafant & Gambarova 1984, 
Bafant & Prat 1988, Ozbolt & Bafant 1992, Bafant 
et al. 2000). 

y 

x 

Figure 1. Microplane strain components. 

The microplanes are defined by their unit normal 
vector components ni (see Fig. 1). Normal and shear 
stress and strain components ((JN, (Jr,.,· cN, err) are 
considered on each plane. They are calculated as the 
projections of the macroscopic strain tensor cu 
(kinematic constraint). Based on the virtual work 
approach, the macroscopic stress tensor is obtained 
as an integral over all in advance defined microplane 
directions: 

(Ju = _23 J [ (J Nnin j + 
7[ s 

+ (J ;r ( n i O d + n j Ori ) J Q ( n) dS 

(1) 

where Q(n) is a weight function of the normal direc­
tion n that introduces anisotropy of the material in 
it's initial state and Sis the unit sphere surface. 

The microplane model is principally similar to the 
discrete models (random particle, lattice, etc.), ex­
cept that it works in the framework of continuum. 
The in advance defined monitoring directions 
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(planes) are equivalent to the beam or truss elements 
of an discrete model. In the initial stage the model 
represents elastic continuum, however, as soon as 
damage localizes in a certain direction, the model 
should perform as a discrete model. 

To model concrete like materials for dominant 
compressive load realistically and to control the ini­
tial elastic value of the Poisson's ratio, the nmmal 
microplane component has to be decomposed into 
volumetric and deviatoric part. ((JN= (Jv+(JD, 
cN = sv+sD; see Fig. 1). This leads to the following 
expression for the macroscopic stress tensor: 

(J ij = -2
3 f [ nin j(J v + ( nin j - oij I 3 )(JD + 
7[ s 

+ (J ;,. ( n i o rj + n j o ri ) ] Q ( n) dS 

(2) 

For each microplane component, empirical uniaxial 
stress-strain relations are in advance defined as: 

(JV= Fv( 8 v ); (JD= FD( f;D ); (JTr = Fy,.( cy,.) (3) 

In the present model these relationships are of the 
secant form. They are based on the scalar damage 
theory: 

(Jiii = Clllc/11 ; cm = cm.of ( f;m ) (4) 

where m denotes the microplane component, Cm is 
the secant stiffness moduli with the initial value Cm,o 
and f( cm) is a function of a scalar damage type. It is 
important to point out that for concrete the deviato­
ric compressive strength as well as the shear strength 
in (3) need to be set roughly 10 times larger than the 
volumetric and deviatoric tensile strength. 

From known microplane stress-strain relations, 
the macroscopic stress tensor is calculated by intro­
ducing (3) into (2), whereas the integration over all 
microplane directions (in the present model 21 di­
rections) is performed numerically. Furthermore, the 
stiffness tensor is calculated as the incremental form 
of (2). 

As discussed by Jirasek (1993) the main reason 
for pathological behavior of the above model sub­
jected to tension is related to the split of the normal 
microplane component into volumetric and deviato­
ric part and not to the ldnematic constraint itself. To 
demonstrate why the problem arises only for tensile 
load let us consider a specimen loaded in uniaxial 
tension (plane stress state, see Fig. 2a). For simplic­
ity reasons only two microplanes (x and y) are con­
sidered. Plane x is oriented in the load direction and 
plane y is perpendicular to it. The normal micro­
plane stress and strain component in the plane y 
((JN,y, BN,y) is split into volumetric ((Jv, sv) and devia­
toric ((JD,y, cD,y) part: 

cN,y = cv +cD,y; (J N,y =(JV+ (J D,y (Sa) 



(J y = (JN ,y = Q (Sb) 

The volumettic and deviatoric strain components on 
the plane y are for the linear elastic response (ap­
proximately point 1, see Fig. 2b): 

E:v = f ( 1- 2v )c:x; £ D,y = -f ( 1 + v )c:x (6) 

where v =Poison's ratio and E:x =total strain in the 
direction of the applied tensile load. 

a) 

a a 

b) 

Figure 2. Volumetric and deviatoric microplane strain com­
ponents for simple two-plane microplane model: (a) micro­
planes loaded in uniaxial tension (plane stress) and (b) volu­
metric and deviatoric stress-strain components. 

From (6) follows that for E:x> 0 the deviato1ic 
stress and strain components of plane y are negative 
(compression, see Fig. 2b). For the crack state the 
load reduces to zero (cx--7+=; CJ= CJx = 0). Conse­
quently, the volumettic stress reduces to zero as well 
(rJv = 0). From (S) is then obvious that CJD,y = 0. The 
volumetric and deviatotic stresses for virgin loading 
are calculated using (4): 

(7) 

in which Cv and Cv are the secant stiffness moduli 
for volumetric and deviatoric components, respec­
tively. The shape of these curves is qualitatively 
plotted in Figure 2b. With (7) and (Sa) the condition 
(Sb) is for the cracked state fulfilled either for: (i) 
Cv = 0 or for (ii) c:v,y = 0. The first implies that the 
deviatoric component on plane y undergoes soften­
ing (see dotted line in Fig. 2b). As mentioned above, 
the deviatoric compressive strength is roughly 10 
times large than the volumetric tensile strength. 
Consequently, (Sb) is satisfied by the second condi­
tion (c:v,y = 0), i.e. the deviatoric strain component 
c:v,y does not undergo softening. Therefore, from (ii) 
and (Sa) follows that c:N,y = c:v i.e. for uniaxial tensile 
fracture the model predicts lateral expansion. 
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Introducing (7) into (S) and denoting 1J = Cv,y I Cv 
it follows: 

1J = -E:v IE: o.y (8) 

For the linear elastic stress-strain state 17 is obtained 
from (6) as 17 = (1-2v)/(l+v). Analogously to the 
elastic solution, to fulfill the condition (i) for 
cracked state, 17 should be constant for any level of 
damage, and therefore: 

Co,y = 1JCv (9) 

According to (9), the condition (i) is fulfilled only 
when Cv,y is proportional to Cv during the entire 
load (damage) history. Only such stress-strain rela­
tionship for deviatoric component which satisfies (9) 
yields to the realistic solution for the uniaxial ten­
sion. If the relationship is different, the model pre­
dicts the pathological lateral expansion ((ii) is satis­
fied) or the normal stress component CJN,y for E:x = +00 

(rJx = 0) does not reduce exactly to zero. 
One of the consequences of the pathological 

model response observed in the finite element analy­
sis is illustrated by two simple examples. First, the 
unit plane stress finite element with four integration 

a) 

Kinematic constrained microplane 

-0.25 0.00 0.25 0.50 0.75 1.00 
strain (x 1000) 

b) 
1.0 ~-~--------------~---~---, 

Kinematic constrained microplane 

0.5 

shear strain (x 1000) 

.......... 0.17 

----- 1.0 

Figure 3. Kinematic constrained microplane for dominant 
tensile load: (a) Axial and lateral strains for uniaxial tensile 
load and (b) shear stress-strain curves for different levels of 
tensile load. 



points is loaded in uniaxial tension. The calculated 
normalized stress-strain curves for axial and lateral 
strain components are plotted in Figure 3a. It can be 
seen that before the tensile strength is reached (hard­
ening) the matelial correctly contracts in the lateral 
direction, however, after the onset of cracldng the 
model predicts lateral expansion. At the end of the 
softening process the lateral and the axial strains are 
equal, i.e. the ratio between the axial and the lateral 
strain is equal to one. Second, the same element is 
loaded in tension and then, for a constant tensile 
stress smaller than the tensile strength, loaded in 
shear up to failure. The shear load is applied by 
controlling the horizontal displacements of two up­
per nodes of the element. The element is assumed to 
be unrestrained perpendicular to the direction of ap­
plied shear load. Figure 3b shows the calculated 
normalized shear stress-strain curves for different 
levels of tensile stresses. It can be seen that the 
model correctly predicts the maximum shear resis­
tance, which decreases to zero when the tensile 
stress reaches the tensile strength. However, as soon 
as the shear resistance is reached the stress-strain 
curves exhibit unrealistic instability as a conse­
quence of pathological expansion. 

2.2 Relaxation of the kinematic constraint 

At lower tensile stress concrete can be viewed as 
isotropic elastic continuum. With increase of the 
stress, in the weak zone a band of microcracks forms 
which by subsequent loading coalesce into a crack, 
i.e. debonding of the material particles (rupture) 
takes place. In the framework of the continuum the­
ory, cracldng is represented by the localization of 
strains. When the strain increases, the stress oriented 
in the same direction (damage direction, direction 1 
in Fig. 4) decreases. The strain components which 
are oliented predominantly laterally to the direction 
of damage (direction 2 in Fig. 4) decrease approxi­
mately elastically, i.e. after damage evolution is 
completed (rupture), the three-dimensional stress­
strain state at the beginning of loading shrinks into a 
uniaxial stress-strain state, i.e. the stresses around 
the crack are relaxed. This is essentially a structural 
effect which should be accounted for in any macro­
scopic material model. In the present model the ef­
fect is a main physical argument for the relaxation of 
the kinematic constrain which should reflect the re­
laxation of the stresses around the crack. To account 
for the relaxation, the total microplane strains in (3) 
are replaced by the effective strains components: 

em.elf = eml/f (IO) 

in which 1Jf stays for the so-called discontinuity 
function. 

Before to decide how to calculate the effective 
microplane strains, an objective criterion for domi-
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nant tensile load has to be formulated. For direct 
tension in one, two or in all three directions, com­
pression-tension, unrestricted shear (no restrains 
perpendicular to the shear direction) with or without 
tension, the volumetric strain as well as maximum 
principal stress are positive. Therefore, it is reasona­
bly to assume that the dominant tensile load exists 
when: 

c:\1>0 and rJ1 >0 (11) 

where rJ1 is the maximum principal stress. Both 
quantities (c:v, rJ1) are invariant macroscopic proper­
ties. For fully cracked specimen the total volumetric 
strain is positive and the principal stress is close to 
zero. In the sense of the smeared crack approach, 
strains in direction of tensile load are large and those 
perpendicular to it are practically zero (unloading), 
i.e. the resulting volumetric strain is positive. 
Moreover, the total volumetric strain in cracked 
material is approximately the same as the non-elastic 
('plastic') volumetric strain and, therefore, it can be 
used as an indicator for dominant tensile damage. 

t dir. 2 

dir. 1 

damage 

Figure 4. Macroscopic loading-unloading of the material as a 
function of damage orientation. 

Unlike to the models proposed by Carol and 
Bafant (1995, 1997), the use of the effective strains 
(10) is not motivated by the theory of plasticity. 
Namely, the same as in the plasticity, the total mi­
croplane strain component can formally be decom­
posed into non-elastic (relaxed) part and the stress 
effective part. The actual motivation for the use of 
discontinuity function are physical arguments dis­
cussed above and Equation (9) which is related to a 
simple two-plane microplane model. According to 
(9), the deviatoric secant moduli C0 should be for 
the entire tensile load history proportional to the 
volumetric secant moduli Cv. Using (9) and the mi­
croplane stress-strain relationships (7), the deviatoric 
microplane stress component for virgin load is cal­
culated as: 

(12) 



where cDlf/ denotes total effective deviatoric strain. 
Equation (12) can be rew~tten as: 

(JD =CD c D,eff or (JD = CD ,eff c D 
(13) 

c D ,eff = c D If/ ,' 

where CD,eff' can be interpreted as a effective secant 
moduli chosen such that (9) holds. 

According to (13), for virgin loading the deviato­
ric stresses can formally be calculated by the use of 
the effective strains or alternatively using total de­
viatoric strains cD multiplied by the effective secant 
deviatoric moduli CD,eff , which varies from CD,o 
(initial state) to 0 (crack state) and is proportional to 
Cv. In both cases the final result is the same, i.e. 17 
remains constant for the entire tensile load history 
what prevents pathological model response. The dis­
continuity function If! has to be of the same type as a 
function f(cv) which controls the volumetric secant 
moduli in (4). If one would use an arbitrary function, 
the pathological behavior could be eliminated, how­
ever, the macroscopic tensile stresses at crack state 
would generally not reduce to zero. Note that for 
If! = 1 the material is treated as a smeared contin­
uum. 

2.2.1 Nonna! microplane component 
The normal microplane strain component is decom­
posed into volumetric and deviatoric part. Although 
the volumetric strain component for individual mi­
croplanes could principally be split into the effective 
and non-effective part, because of the following rea­
sons the volumetric strain is not split: (1) The volu­
metric strain is invariant with respect to the micro­
plane orientation, (2) the static constraint on 
volumetric stress for tensile load is automatically 
fulfilled (cv--+ +oo, av---+ 0), (3) it serves as a macro­
scopic indicator for tensile dominant damage and ( 4) 
in the total (not decomposed) form, it is useful for 
monitoring of the stress-strain path of concrete under 
tensile cyclic loading. 

As shown above, the negative deviatoric strain 
component means that the microplane normal is ori­
ented close to the direction which is orthogonal to 
the damage direction. Therefore, when damage in­
creases the deviat01ic microplane stress and strain 
components for these directions should approxi­
mately relax (unload) to zero. To account for the 
above effect, the discontinuity function for the de­
viatoric strain is taken as: 

cl' >0, a 1 >0, cD <0 ~ w=f(c\I) (14a) 

cD '20 ~ If!=] (14b) 

The discontinuity function in (14a) has the same 
shape as the microplane stress-strain relationship for 
volumetric tension f(cv). For the planes which are 
oriented predominantly into the damage direction 

(cD > 0), the total strain perpendicular to the crack 
surface yields to infinity and corresponding stress 
reduces to zero. Consequently, for these microplanes 
cv--+ +oo, av, CJD, ar--+ 0 and cD---+ +00 (softening) 
with If!= 1. 

2.2.2 Discontinuity function for the shear micro-
plane strain components 

The microplane shear resistance depends on the 
normal microplane stress. For positive normal stress 
(tension), after onset of cracking the shear resistance 
reduces to zero. On the contrary, for negative normal 
stress (compression), the microplane offers resis­
tance over shear softening regime mainly through 
friction and it generally does not reduce to zero. 
Typical situation when this occurs is compression or 
shear-compression softening where microplane 
shear resistance predominantly relies on shear­
fliction due to the effect of normal compressive 
stresses. For these stress-strain states concrete is 
modeled as a cracked continuum. However, for 
dominant tensile damage, independent of the micro­
plane orientation, the shear strain and stress compo­
nents relax to zero. Consequently, the shear discon­
tinuity function for individual microplanes reads: 
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cl' > 0 ; a 1 > 0 ~ If! = f (cl' ) 

else If!= 1 

(15a) 

(15b) 

Function If! is the same as for the normal strain com­
ponent in (14a). 

The discontinuity function for microplane shear 
stress component plays an important role by model­
ing of shear failure. When shear fracture is modeled 
by the three-invariant plasticity based models for 
concrete (Willam et al., 1999), the shear damage un­
realistically spreads over a few elements. On the 
contrary, in the present microplane model If! enables 
localization of damage in a row of single finite ele­
ments. Consequently, smeared fracture modeling of 
concrete becomes closer to the discrete crack ap­
proach and therefore more realistic. 

2.3 Unloading, reloading and cyclic loading 

To model unloading, reloading and cycling loading 
for general triaxial stress-strain states, loading­
unloading rules for each microplane stress-strain 
component are introduced. In contrast to virgin 
loading, for cyclic loading the microplane stress­
strain relations must be written in the incremental 
form: 

dam = C,~dcm (16) 

where CT111 represents tangent moduli. For virgin 
loading it reads: 

T dCm c d cm =--c/11 + Ill cm 
dcm 

(17) 



For unloading-reloading the tangent moduli is gen­
erally defined as: 

> . _ _ (Jm.P 
8 

_ 
8 8 

111 8 m ,P ' 8 1 - 8 m ,P C + jJ ( m m ,P ) 
m,0 

(18) 

In (18) CJ111,p and 8111,p denote the positive or negative 
peak stress and the corresponding strain for each mi­
croplane component using values CJ111,p +, 8m,p + and 
CJ111 ,p-, 8111,p- for positive and negative peaks, a and jJ 
are empirically chosen constants between 1 and 0 
and C111 o is initial elastic stiffness moduli for cotTe­
spondi~g microplane component. More detail related 
to the modeling of cyclic loading are given in 
(OZbolt et al. 2001). 

2.4 Initial anisotropy 

The initial anisotropy is a consequence of the mate­
rial structure, i.e. by nature the material has different 
properties in different directions, The simplest pos­
sibility to account for initial anisotropy is setting 
function .Q(n) in (1) to be dependent on the orienta­
tion of the normal of each microplane relative to the 
in advance given weak direction(s) Wi or strong di­
rection(s) Si or both. Principally, when the micro­
plane direction coincide with the weak direction 
.Q(n) = 0 and if it is perpendicular to it .Q(n) = 1. For 
the strong direction is opposite the true. Once the 
function is known the anisotropy is automatically 
taken into account by introducing .Q(n) into (2). 

To better control the relations between dominant 
directions of the material (such as wood, composites, 
etc.) it is generally assumed that in the material a 
few dominant week directions Wi (for instance in 
wood, radial WR and tangential WT) and one domi­
nant strong Si (in wood, parallel) direction exist. The 
resulting function .Q(n), which controls the initial 
anisotropy, is calculated as a product of the func­
tions which control week and strong directions, re­
spectively: 

ll(n) =( f ll(n)w;) ( ;:ll(n).; J (19) 

The functions from (19) are controlled by the fol­
lowing empirical relations: 

I l
)'i 

.Q(n)wi = 1- (COS rpwi ) (20a) 

I l
vi 

.Q(n),; = (cosrp,;) (20c) 

where rp corresponds to the angle between the mi­
croplane orientation n and the week (wi) or strong 
(si) orientation, respectively. The parameters y 
(0 < y :S 1) and v (v > 1) are empirical. Together with 
basic microplane parameters (Ozbolt et al. 2001) 
they control the relations between the initial stiffness 
and the strengths in the dominant directions of the 
material. 

2.5 Material model parameters 

Basic parameters of the present microplane model 
are Young's modulus and Poisson's ratio as well as a 
set of parameters which control the microplane 
stress-strain relationships (3). The resulting fracture 
properties (strength and fracture energy) are ob­
tained implicitly by fit-back analysis on a single fi­
nite element or on the integration point (mate1ial 
model level). The material parameters need to be 
varied such that model response approximately cor­
responds to the known macroscopic properties of the 
material. For concrete a special code is written 
which for a given set of macroscopic properties (ten­
sile strength, compressive strength and fracture en­
ergy) generates microplane model parameters. For 
more detail see Ozbolt et al. (2001), 

3 VERIFICATION AND NUMERICAL 
EXAMPLES 

In the present paper the model response is not com­
pared with the typical test data. This comparison is 
present in (Ozbolt at al. 2001). To demonstrate that 
the improved model leads to realistic results for 
dominant tensile load, the examples shown in Fig­
ure 3 are re-analyzed with the new model. For this 
purpose, the same as for the original kinematic con­
straint microplane model, a single finite element (see 
Fig. 3) is first loaded in tension and subsequently, 
for different level of constant tensile load, loaded by 
shear. Moreover, it is demonstrated that model is 
able to realistically predict mixed-mode fracture of 
concrete as well as compressive failure of wood 
which exhibits strong initial anisotropy. In all nu­
merical examples a standard eight-node solid finite 
elements with eight integration points were em­
ployed. As a localization limiter, the crack band 
method is used (Bafant and Oh 1983). 

614 

3.1 Tension and tension-shear test 

Figure. 5a shows the calculated stress-strain curves 
(lateral and axial directions) for uniaxial tensile load. 
As can be seen, in contrast to the standard kinematic 
formulation of the model (see Fig. 3), the new model 
predicts in lateral direction contraction for the entire 
load history. By increase of damage in the axial di-



a) 

b) 
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Figure 5. Uniaxial tension and tension-shear combination: (a) 
nominal stress-strain relationship and corresponding lateral 
strain and (b) shear resistance as a function of the tensile stress. 

rection the lateral strain decreases asymptotically to 
zero. 

In Figure Sb the calculated shear stress-strain 
curves are plotted for different levels of tensile 
stresses. In contrast to the original ldnematic micro­
plane model (see Fig. 3b), independent of the tensile 
stress level, the shear stresses are always correctly 
reduced to zero. 

3.2 Mixed-mode fracture of concrete 

In a number of numerical studies of the mixed mode 
fracture of concrete that have been recently per­
formed by different authors, it has been concluded 
that the smeared fracture analysis based on a differ­
ent local and nonlocal formulations is generally not 
able to correctly simulate this complex type of frac­
ture (Di Prisco et al. 2000). To check whether the 
3D finite element analysis (crack band approach) 
with the use of the present model can correctly pre­
dict mixed mode fracture of concrete, the tests per­
formed by Nooru-Mohamed (1992) have been 
simulated (Ozbolt & Reinhardt 2000). In the tests, 
the double notched specimen were first loaded in 

shear and subsequently in tension by constant shear 
load. Figure 6 shows observed and calculated crack 
patterns (shear force: P = 5, 10 kN and P = Pmax). As 
can be seen the calculated crack patterns are similar 
as the experimental. Obviously, the model is able to 
correctly deal with relatively complex fracture 
mechanisms in the frame-work of the local smeared 
crack theory. 

a) 

b) 

c) 

Figure 6. Experimental and calculated crack patterns (dark 
zone= max. principal strains) for constant shear load of: a) 
P = 5 kN, b) P = 10 kN and c) P = Pmax· 

3.3 Compression failure of composite (wood) 

To demonstrate the possibility of modeling of mate­
rials that exhibit strong initial anisotropy, compres­
sive failure of wooden specimen (50x50x100 mm) 
was simulated. The three dimensional finite element 
analysis of the specimen loaded in uniaxial compres­
sion was performed. In Figure 7 are shown the fail­
ure modes for different orientations of the week and 
the strong directions, respectively. Two week (tan­
gential and radial) and one strong (parallel) direc­
tions were assumed. The predicted failure modes are 
in good agreement with experimental observations 
(Ozbolt & Aicher 2000). 
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Figure 7. Different failure modes as a function of the orienta­
tion of the weak (strong) directions in the wood. 

4 CONCLUSIONS 

The present microplane model is the macroscopic 
three-dimensional material model for concrete like 
materials. The simplest and computationally most 
efficient fo1m of the model is based on the ldnematic 
constraint approach which, however, in combination 
with realistic stress-strain relationships for concrete 
leads to unrealistic model response for dominant 
tensile load. It is discussed that the main reason for 
this is due to the split of the normal microplane 
component into volumetric and deviatoric part and 
not to the ldnematic constraint itself. To improve the 
model the ldnematic constraint for dominant tensile 
load is relaxed by splitting of the microplane strain 
components into the effective and relaxed part. The 
split is controlled by the discontinuity function 
which accounts for the effect of discontinuity as a 
consequence of cracldng. The conceptual simplicity 
of the new model is preserved. It is shown that the 
new model predicts physically correct results. Using 
relatively simple cyclic rules on the microplane 
level, the macroscopic cyclic response for any three­
dimensional stress-strain history comes automati­
cally out. Moreover, it is shown that the model is 
able to simulate complex fracture phenomena for 
materials with damage induced anisotropy as well as 
for the materials with strong initial anisotropy. 
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