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Rotating smeared crack and orthotropic damage modeling for concrete 
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ABSTRACT: Induced anisotropy and anelastic strains of concrete are modeled within the general framework 
of the anisotropic damage mechanics. For this purpose, anisotropic criteria are developed and allow to govern 
crack growth in both direct and induced tension. In the case of induced tension, an original criterion traduces 
the effects of microscopic self-stresses generated at the aggregate-paste interfaces. The control of damage 
state is ensured by two 2nd order tensors, for direct and induced cracks. Damages are deduced from the 
cracking state by the theory of the weakest link, generalized to the non-radial loading cases by an original 
method inspired from the Weibull theory. This method allows to couple several non-coaxial cracking states. 
Although only cracks due to mechanical loading are taken into account in this study, the method can be easily 
extended to other kinds of degradation. To assess the relevance of the model, several numerical simulations 
are performed and analysed. 

1 INTRODUCTION 

The numerical prediction of concrete structures be­
havior is a field of study which has made important 
progress for these two last decades. Indeed, the in­
creasing power of computers authorizes to improve 
reliability and accuracy in describing degradations 
and ruins risks. This improvement is deeply related 
to theoretical models, which have to reproduce with 
maximum of exactitude the pathological phenomena 
encountered on these structures. Among the great 
number of disorder causes (cracks due to mechanical 
loading, delayed strains due to shrinkage and creep, 
chemical attacks, ... ), we only take into account in 
this study the reproduction of the concrete degrada­
tion subjected to mechanical loading, with the aim to 
carry out numerical simulations of structures be­
havior. However the model can be extended to other 
kind of fracture, thanks to a probabilistic formula­
tion of the evolution laws and degradations cou­
pling. 

Several important phenomena must be taken into 
account to study the concrete behavior subjected to 
mechanical loading: cracking and its anisotropic as­
pects (inducing an anisotropic material behavior), 
unilateral behavior of the material (independence of 
stiffhess in tension and compression), reproduction 
of anelastic strains (residual strains appearing after a 
total discharge of the structure). Numerous theoreti­
cal approaches are proposed to model the cracking 
phenomenon in concrete; the most widely accepted 
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are probably damage mechanics (Mazars et al. 1990, 
Fichant et al. 1997), fracture mechanics (Bazant et 
al. 1998, Tandon et al. 1995), and plasticity (Feen­
stra et al. 1995). 

The model proposed in this study can be classi­
fied within the general framework of anisotropic 
damage mechanics, with reproduction of anelastic 
strains (Sellier et al. 1999). The cracks are assumed 
to initiate and propagate in mode I, and consequently 
bulk collapses and crack propagation in mode II or 
III are not described. Damages are represented by 
two 2nd order tensors associated with each type of 
cracking (direct or induced tension); the eigendirec­
tions of these tensors are able to rotate in the case of 
non-radial loading. This approach is already adopted 
by other authors (Mazars et al. 1990, Bary et al. 
2000), and makes it possible to reproduce ortho­
tropic cracks planes. The damage variables are de­
duced from the states of cracking by the Weibull 
theory (Weibull 193 9) generalized in anisotropic 
media by an original method. The damage in tension 
is governed by a load function in effective stresses 
using a criterion of Rankine. In compression, in­
duced crack states evolve according to a load func­
tion developed with the aim of taking into account 
self-stresses appearing at aggregate-paste interfaces. 
The anelastic strains are due to uncomplete reclosure 
of cracks after total discharge; their increases are co­
axial with the effective stresses tensor and they can 
be partially closed by the effect of compressive 
stresses. In a finite element context, objectivity of 



the model response in softening phase is ensured by 
the classical technique of Hillerborg (Hillerborg et 
al. 1976). 

2 BASES OF THE MODEL 

Cracks are assumed to propagate in concrete by the 
effect of microscopic effective stresses. The material 
behavior then becomes orthotropic and anelastic 
strains appear in the damage eigendirections. Both 
elastic response and anelastic strains changes are 
supposed completely determined by: 

- the tensor of effective stresses noted Ci (R) 

- the tensors of internal variables representing the 
=t 

cracking state, noted Pf (R) for the cracks induced 

by tensile stresses and Pfc (R) for the cracks induced 

by the compressive stresses (Sellier et al. 1999). 

2.1 Stresses and strains 

The effective stresses are linked to the apparent 
stresses by damage variables estimated in the 
eigendirections of effective stresses. These damage 
variables take into account the unilateral aspect of 
the concrete behavior by means of a partition of the 
stress tensor into positive and negative part equa­
tions (1) and (2). 

This partition is carried out classically according to 
the sign of the eigenvalues of cr(R) (Mazars et al. 

1990, Bary et al. 2000). 

The total strains result from the superposition of 
elastic and anelastic strains: 

c(R) = &(R) + c(R) (3) 

The elastic strains are deduced from the effective 
stresses by a softening matrix, depending on the 
damage state and the current effective stresses: 

d;~R) =H(R{ E0 ,v0 ,Pf:R)'P/R)•~(R)}d§(R) (4) 
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The anelastic strains are subdivided in anelastic 
strains of tension and compression; in both cases 
they are function of the damage state, and of the cur­
rent state of effective stresses which can reclose 
them partially in case of compression. 
The eigenvalues of the apparent stress tensor are 
obtained from the eigenvalues of the effective stress 
tensor and the damages projected in the eigendirec­
tions of the effective stresses, by the expression: 

CY(ii)J = Ci/a),1 (1-d/a),f) + Ci[a),1 (l -d[a),1) (5) 

The total strains are classically obtained by su­
perposition of the elastic and anelastic strain: 

=a,I =a,c 

&(R) = c(R) + C(R) + C(R) (6) 

To ensure, in finite element context, the objectiv­
ity of post peak dissipation in tension, the relation 
between effective stresses and elastic strains in­
cludes a Hillerborgh procedure in tension, the elastic 
behavior is then proposed by: 

ds~a).t = ~ [H da[aJ,r + da(a),1 - u0 {do\ai,1i + da<aJ,1n }] (7) 
0 

with H the Hillerborgh term: 

H = (_L + (1 _ _LJ (1- max~d!~J,l • d~eak DJ (8) 
/(ii)J /(ii),! 1 d peak 

The Hillerborg procedure is applied to the elastic 
strain components coaxial to the eigendirections of 

the positive effective stresses. t; and l(li)J are 

respectively the internal characteristic length for 
tension and the characteristic size of the finite 
element in the considered direction (Oliver 1989). 
The Hillerborg procedure is not applied in 
compression. 

2.2 Damage 

Cracks are described by two 2nd order tensors noted 
=I 

respectively Pf (R) for the cracks due to direct 
=c 

tension and Pf (R) for cracks consecutive to 

compressive stresses. The eigenvalues of these 
tensors represent normalized states of cracks, thus 
they vary from 0 for healthy material to 1 for 
completely degraded material. When considering a 
representative elementary surface of concrete, and 
taking into account the randomness of the place 
where cracking occurs, the measurement of 
normalized cracks as defined can be directly related 
to a probability of surface creation of discontinuity. 
This probabilistic definition of damage thereafter 
allow to deal with the problems of coupling between 



various degradation causes on the one hand and the 
macroscopic damage on the other hand by using the 
theory of the weakest link {Sellier et al. 1999). 

2.2.1 Damage in tension 
Cracking in tension can be due either to direct ten­
sion stresses, or induced tension stresses caused by 
orthogonal compression. According to Weibull the­
ory, the probability Ps corresponding to healthy sur­
face is equal to the product of the probabilities P/ 
and P/(actJ corresponding respectively to healthy 
surface after being subjected to tensile stress and 
orthogonal compressive stress: 

(9) 

In this expression, act is the probabilistic weight of 
the compression cracks on the damage in tension; it 
is consequently a coupling coefficient between the 
cracks induced by compressive stresses and the 
damage in tension. In addition, the fact that a 
representative elementary surface can only be 
healthy or degraded involves the relation 
Pf + Ps = 1 . The definitions of resulting damage 

(from coupling of different degradation causes) and 
both induced and direct tension cracks, together with 
equation (9) lead to the following relation: 

(10) 

For the nonradial loading paths, the expression 
(10) of the theory of the weakest link is not directly 
exploitable since the cracking tensors do not have 
their eigendirections confounded. This difficulty can 
be circumvented by applying to the preceding rela­
tion the transformation ~ defined by: 

X ~-ln(l-X) (11) 

Equation (10) becomes then: 

-ln(l-d 1
) = -ln(l-Pf1

) +a (-ln(l-Pf")) (12) 
'----.,-----I ~ cl "--v-----" 

~ ~ p 

8 is called damage index, Ji and ff are denoted in­
dices of cracking respectively by direct and induced 
tension. The transformation ¢ is applied to the ei-

genvalues of the tensors Pf to obtain the eigenval-

By application of the transformation <r1 defined at 

equation (11), the eigenvalues of coupled damage 
tensors can be calculating by: 

d' -1- I_ s:1 ) 
(o'),1 - exp\ u<o')J (14) 

Taking into account the assumption of crack 
opening in mode I, we propose to express the indices 
of cracking thanks to a Weibull function in which an 
effective threshold stress is associated with each 
cause of cracking: 

(15) 

with i={t for cracks due to direct tension, c for 
cracks due to induced tension} 

a:i characterizes the material cohesion and m; the 

dispersion of cohesion. The higher m; is, the more 
homogeneous and brittle the material is. The 
evolution of the threshold stress is governed by the 
progression of the load surface associated with each 
kind of cracking (Sellier et al. 1999). 

2.2.2 Damage in compression 
The damage in compression is due to the appearance 
of cracks parallel to the direction of compression. 
This condition is translated, thanks to the theory of 
the weakest link, in the following way for each ei­
gendirection of the effective stress tensor: 

(1- d;) = (1- Pf1~)1/f/i (1- Pf1~1 )lf!u x 

(1- Ph~ t'"l/f!1 (1- ph~1 rl/f!u 
(16) 

In this expression, the coefficients ate are the 
probabilistic weights of the tension cracks on the 
damage in compression. The functions If/ describe 
crack reclosure, and vary between 1 for open cracks 
to 0 for closed cracks. The transformation ¢ defined 
by expression (11) can also be applied to the expres­
sion of the damage in compression (16). This trans­
formation allows, as in the tension case, to simplify 
the coupling problem in an additive problem of 
cracking indices tensor. 

ues of the tensors j3. After having expressed all the 2.3 Damage evolutions 

tensors /3 in the same reference (R), the tensor of 2.3 .1 Damage criteria 

damage indices 5 is deduced by a simple linear A 1 oad function r is defined for each cause of 
combination of /3 : cracking: 

(13) r = a(a),l,EQU - a(a),l,SEU!l With s={t, Cj (17) 
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In this expression, 0-(i'i)J,EQU 1s the equivalent 

effective stress, it depends on the state of cunent 
effective stress and gives the form of the cracking 
criterion. The flow and consistency conditions are 
written respectively by: 

{
dj's = 0 ~s ~s 
JS = 0 and d<J((i),I,SEUIL = d<J(O'),I,EQU (18) 

A Rankine criterion in each eigendirection of ef­
fective stress tensor is adopted for damage in ten­
sion, which leads to the following equivalent stress: 

(19) 

In compression, cracks initiate parallel to the di­
rections of compression loading, in the neignbor­
hood of aggregate - hydrated cement paste inter­
faces. This mode of initiation is due to the existence 
of self-stresses (figure 1) generated by the difference 
of stiffness between aggregate and cement paste. 

Inclusion 
(aggregate 

i 
Negative paii of self-stress 

~ II 

Positive part of self-stress 

Compression direction 

Figure 1. Self-stresses generated by compressive stresses. 

If compression takes place in direction I, the ef­
fective stress in direction II sees its value varying lo­
cally around an average value. This effective stress 
in direction II is obtained by superposition of a state 
of average effective stress and a system of self­
stresses, the positive part of which is located at ag­
gregate - paste interfaces. This self-stresses is de­
fined by a zero average and a non-zero standard de­
viation; a measurement of self-stresses is thus the 
standard deviation of the microscopic stress. We as­
sume that this standard deviation is proportional to 
the orthogonal compressive stress. The following 
expression is then proposed for the equivalent stress 
characterizing the microscopic state of stress in the 
vicinity of the aggregate-paste interface: 

(j«O'),l,EQU = ( (j(0'),11 r + c~(( (j(O'),J r r + (( (j(u),lll r r (2Q) 

In this expression, C is a coefficient allowing to 
control the aspect of load surface in the planes of the 
effective stresses. This coefficient fixes the intensity 
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of equivalent self-stresses in function of the or­
thogonal compressive stresses. C is thus all the 
higher as mechanical properties of aggregate and 
cement paste are different It represents the hetero­
geneity of the concrete: the more C is, the less the 
concrete resists. 

Normalized loading stress Cf1 I O'cu 

-2.8 -2.4 -2 -1.8 -i .4 -1 -0.8 -0.4 

C=l/3 
C=l/2 

normalized contaiment stress Cf II I a c 11 

Figure 2 . damage equipotentials d1 in function of normal­
ized effective stresses et in plane stresses. 

Figure 2 represents the curves of constant­
damage of compression in the loading direction I. 
Both harmful effects of heterogeneities (resistance 
reduction due to the increase of C) and sensitivity of 
the compressive stress to a stress of containment in 
perpendicular direction are highlighted on this fig­
ure. 

2.3.2 Coupled damages indices 
The coupled damage indices are expressed accord­
ing to equation (14) by: 

(21) 

where i={t if damage affects a stress eigenvalue 
in tension, c in the case of compression}. 

The macroscopic damage is obtained by applying 
the weakest link theory on the damages resulting 
from different causes: 

=} II =} 

b(R) = Iakibk(R) 
k=I 

(22) 

where akJ are the coupling coefficients between 
cracks of origin k and the damage j, with j={t for 
tension, c for compression}. c5 j is the marginal 

index j associated with cracks of origin k. The 

marginal damage indices c5 j are obtained by a linear 

combination of the indices of cracking fJ as defined 

in equation (13). The marginal damage indices in 
tension are then expressed by: 

(23) 



In the same way, the marginal damage indices in 
compression are proposed in the following form to 
take into account induced craks in direction II and 
III on damage in direction I : 

(24) 

This last expression is equivalent to a weakest link 
formulation between directions II and III . In order 
to ensure evolution of damage coaxial to effective 
stress eigendirections, only the diagonal terms of the 

indices of cracking tensors // expressed in these 

eigendirections are affected. This procedure allows a 
possible rotation of the eigendirections of the tensors 
=i 

f3 if the eigendirections of these tensors are 

different from those of the effective stress tensor. 

2.4 Anelastic strains 

In tension as in compression, increments of ane­
lastic strain are assumed to be coaxial to the incre­
ments of indices of cracking, consequently to the ef­
fective stresses. The increments of marginal 
anelastic strains (subscript 0) are defined independ­
ently of crack re-closure in the following form: 

with s={t,c} (25) 

In equation (25), 1(~). 11 takes into account the 

Hillerborgh procedure on the anelastic strains in 
tension by the following expression: 

P/ - l!: (0),11--l-
(0),11 

(26) 

In compression l(fTi,II=l. £~is an adjusting parameter 

obtained by a tensile test or from direct compression 

with cycles of load discharges. fc~),1 is a function of 

damage state proposed in the following form: 

ds,* 
f'S (Cf),/ 

}(Cf),/= 1-dt,* 
(Ci),! 

where: 

with s={t,c} (27) 

The anelastic strains in tension as in compression 
can be partially closed by the effects of compressive 
stresses. The marginal anelastic strains defined in 

equation (25) are then conected using crack re­
closure function !fin the following way: 

(29) 

(30) 

The coefficient Vp is measured on an uniaxial 
compression test on a cylindrical concrete specimen. 

3 NUMERICAL SIMULATIONS 

In this section are presented three studies which il­
lustrate the response of the model. 

3 .1 Willam test 

The Willam test consists firstly to impose on a 
single finite element an uniaxial increasing strain up 
to the peak of the behavior law; secondly, as soon as 
the peak is reached, the element is subjected to ad­
ditional shearing and orthogonal tension strains 
(same rate for shearing, twice larger rate for ten­
sion). The second phase of the Willam test conducts 
to a rotation of both strains and stresses eigendirec­
tions, and for softening materials to a change of sign 
of the shear stress. 

4,E+06 -~----------------------. 

-2,E+06 "-----------------------" 

Figure 3: Numerical results of the Willam test in term of strain­
stress curves. 

. Numerical results of the Willam test are presented 
on Figure 3 in term of strain-stress curves. Figure 4 
shows that the orthotropic damage allows to reach 
the maximum tensile strength in orthogonal direc­
tions at two different moments. Moreover this figure 
illustrates the offset between rotations of respec­
tively crack and stress tensor eigendirections. 
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Figure 4: Stress Eigenvalues cr1 and cru; evolutions of the rota­
tion angles ofrespectively stress tensor 8(cr) and damage tensor 
8(pf) eigendirections. 

3.2 Notched beams subjected to three points 
bending - Scale effect 

The model response to three single-edged 
notched beams of different size subjected to three 
points bending is presented in this section. Numeri­
cal results are confronted with experimental ones 
provided by (Saouridis 1988) in term of loading 
strength versus mid-span displacement curves; in 
addition the scale effect of the three calculated 
beams is highlighted and compared to experimental 
data and to Bazant's law (Bazant et al. 1998). Di­
mensions of the beams are mentionned in Table 1 
below. Young modulus is E=32000Mpa, Poisson ra­
tio v=0.2 and tensile strength f1=3.8MPa. 

Table 1: geometric properties of the three beams 

L(m) h(m) b(m) 

Small 0.80 0.1 0.1 
Medium 1.13 0.2 0.1 
Large 1.38 0.3 0.1 

Figure 5 represents the damage distribution on 
large beam (L) at the end of the calculation, in de­
formed configuration. The mesh in the vicinity of 
the notch is refined (8 elements) in order to capture 
damage initiation. 

Figure 6 presents the loading strength versus mid­
span vertical displacement curves, obtained numeri­
cally for the three beams; these results are compared 
to the experimental data. The confrontation be-

Figure 5: damage distribution on large beam (L) in de­
formed configuration. 
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tweeen the numerical and experimental results 
shows a very good prediction of the maximum 
loading force for the three beams, and a good de­
scription of their post-peak behavior. 

5,5 

5,0 

4,5 

4,0 

~ 3,5 

g 3,0 

~ 2,5 

& 2,0 

1,5 

1,0 

0,5lk:-=----.---,----.--=::~~~~~ 
0,1 0,2 0,3 0,4 0,5 0,6 

Displacement (mm) 

Figure 6: loading strength versus mid-span vertical displace­
ment curves obtained numerically for the 3 beams (continuous 
lines); comparison with experimental results described in 
(Saouridis 88) (dotted lines+ symbols). 

The scale effect as restored by the model is pre­
sented on Figure 7 in term of nominal stress CTN ver­
sus ratio height of the beam d I greatest dimension of 
aggregates da (equal to 8 mm). The resulting values 
are compared to experimental data and to Bazant's 
law of scale effect (Bazant et al. 1998, Mazars et al. 
1994) giving the evolution of the nominal stress 
CTN by: 

( J
-1/2 

a N =BJ; 1 +__!___~ 
ko da 

kO 20 results from (Mazars et al. 1994); B = 
0.52 was identified to correspond to the experimen­
tal value f 1= 3.8 MPa provided by (Saouridis 1988). 
According to Figure 7, numerical and experimental 
results are in very good agreement. The internal 
length parameter of the model, whose value is fixed 
here to 27 mm, appears to correctly describe the 
scale effect of structures. 

0,85~----

0,8 -1-'--------1--

0,75 +---~----f---------+--------1-----

@ 0,7 

'5 0,65 -i-- ---+----<llF'.._-----+------+-----

0 6 t + Experiments 
' Simulations 

0,55 --Bazan! _ __L__ 

0,5 --- -- _J__ __ - -
10 20 30 40 

d/dO 

Figure 7 : scale effect study; numerical results are compared to 
experimental ones (Saouridis 1988) and to the Bazant's law 
(Bazant et al. 1998). 



3.3 Single-notched beam subjected to fracture in 
mixte bending - shear~ng mode 

The beam studied here presents a geometry knows 
as "Iosipescu" type (Schlangen 1993). Loading ap­
paratus and geometry are presented on Figure 8; 
both metal plates of loading and loading bandage are 
included in the mesh. 

A B 

100 

210 

220 

440 

Figure 8 : mesh properties; loading and boundary conditions, 
and damage pattern at final step calculation. 

Data concerning concrete are: Young modulus 
35000MPa, Poisson coefficient 0.2tensile strength 
3.0Mpa, fracture energy 0.12 N/mm. 

The examination of damage tensors eigendirec­
tions near the notch reveals the existence of strong 
distortions, which indicates a high level of damage 
in two orthogonal directions. Further from the notch, 
only one principal value is significant, which means 
that rotations of stresses are moderate in this zone. 
The crack thus opens in mixed mode near the notch 
and in mode I in the opposite side of the notch. 

The damage distribution represented on Figure 8 
shows that the crack initiates obliquely in respect to 
the notch, then turns towards the external edge of the 
metal plate used as loading support. This mode of 
crack propagation is in good agreement with ex­
perimental observations (Schlangen 1993). The main 
crack is very localized and does not follow the mesh· 
it is ranged by a diffuse cracking zone where th~ 

/\ 40 

35 ~ A~ Experiment 
30 f A'\._~ 

z 25 If ''11... :- Simulation Gf=O, 12N/mm 

:f-20 YJJ.,_ 
15 / '_"A-' 

10 I 
j 

5 I 

OA..--r~-,-,-,-~~-,---r~~~~~___j 

0 0,015 0,03 0,045 0,06 0,075 0,09 0,105 0,12 0,135 0,15 

CMSD (mm) 

Figure 9 : Calculated and experimental curve CMSD 

damage does not reach the peak value of the behav­
ior law in direct tension. The crack mouth shearing 
displacement (CMSD) is compared to the experi­
mental data resulting from (Schlangen 1993) on 
Figure 9; this confrontation shows a good descrip­
tion of the peak load and the structure behavior. 

4 CONCLUSION 

This study presents a theoretical approach using or­
thotropic damage mechanics to describe the concrete 
behavior. The model, based on the effective stresses 
concept and the existence of self-stresses at paste­
aggregate interfaces, has the following main fea­
tures: description of the orthotropism induced by 
cracks (in tension as well as in compression), ability 
of progressive rotation of the damage eigendirec­
tions (in function of those of stress tensor), descrip­
tion of the unilateral aspect, reproduction of aniso­
tropic strains due to cracks opening. The two 2nd 
order damage tensors, corresponding to direct ten­
sion and compression, are deduced from the damage 
states by the theory of the weakest link. An original 
method allows to generalize this theory in the cases 
of non-radial loadings, and can be extended to other 
causes of degradation (chemical attacks for exam­
ple). The model is implemented in the case of plane 
stresses in the finite elements code CASTEM 2000 
developed at CEA. Several numerical simulation~ 
are then presented. The produced results show a sat­
isfactory description of rotations of eigendirections 
of the damage tensors consecutive to a progressive 
rotation of the loading directions. In addition, simu­
lations of two types of notched beams are carried 
out. The numerical results obtained are confronted 
with experimental data, and this comparison shows 
that the model describes in a precise and reliable 
way the main aspects and phenomena underlined by 
the tests. The scale effect is correctly reproduced on 
the three notched beams of different size; in the 
same way the numerical results obtained on the Io­
sipescu beam show a good description of the dam­
age facies and a satisfactory agreement in term of 
crack opening. 

An extension of this model coupling chemical 
and mechanical degradations (alkali-aggregate reac­
tion) is in progress. In addition, the numerical im­
plementation of the model in 3D formulation is in 
project. 
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