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ABSTRACT: An analytical model of bending of plain concrete beams is presented. Applying the fictitious 
crack model with a linear softening curve the moment-curvature relationship is obtained. The modulus of rup
ture is known to depend only on the initial slope of the cr-w curve. Hence, a linear softening model gives suf
ficient accuracy. The brittleness number, including beam size and softening characteristics, is shown to be the 
key parameter through which both small and large-size behaviour is modelled correctly. Comparisons with ex
isting FEM-based expressions for the modulus of rupture show a good agreement. 

l INTRODUCTION 

The modulus of rupture fr measured from three- or 
four-point bending tests on plain concrete beams is 
often used to assess the uniaxial tensile strength f, of 
concrete. These tests are easy to perform and there 
exist~ several standards for their execution (e.g. 
ASTM C78) . However, experimental evidence 
shows that f, is generally larger than f, by about 25 
%, see e .g. Neville (1995). 

Throughout the past 2 decades several investiga
tions have considered bending of plain concrete 
beams by applying FEM with tensile softening mate
rial behaviour. For a general review see Planas et al. 
(1995) or the recent textbook by Bazant and Planas 
(1 998). Alvaredo & Torrent (1987) suggested a ma
jor simplification of the problem, viz. that the 
modulus of rupture was governed only through the 
initial portion of the softening curve. 

The basic finding of the FEM based investiga
tions using various softening curves is that/, is size 
dependent. However, this size-effect is different 
from the LEFM-size-effect, where strength is de
creasing proportional to v·112

, where D is the beam 
depth. ln LEFM the size-effect is linked with the ex
istence o f cracks/notches giving rise to stress singu
larities whereas the size-effect on/, is due to the sof
tening zone in the boundary layer, Bazant & Li 
( 1995). 

The present paper gives an analytical solution to 
the problem in accordance with the technical bend
ing theory. The work is based on previous investiga
tions by Chuang & Mai ( 1989) and by Ulfkjaer et al. 
(1995). A general approach is taken, showing that 
the fictitious crack model and the crack band model 

yield identical solutions to the problem. The analyti
cal solution is compared with a FEM based expres
sion and it is demonstrated that the analytical model 
agrees with this expression. 

One may of course ask whether an analytical so
lution i~ needed when FEM based expressions are al
ready available. There are several reasons for an ana
lytical solution: (i) the solution is based on simple 
well-known assumptions, (ii) in addition to the 
strength, the solution also includes the depth of the 
fracture zone and the stress distribution, (iii) the so
lution is born with correct small- and large-size be
haviour and (iv) a better understanding of the impor
tant parameters is achieved. 

2 TENSION SOFTENING 

When the tensile stress exceeds the uniax.ial strength 
fr concrete starts to crack. In a deformation con
trolled tensile test the complete load-elongation 
curve of a plain concrete sample shows an elastic 
phase governed by the modulus of elasticity E, until 
fr is reached, followed by a decreasing curve (soften
ing) where cracking takes place until the sample is 
completely separated in two halves. 
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The interpretation of the softening behaviour has 
mainly been divided in two research groups: (i) the 
fictitious crack model by Hillerborg et al. ( 1976) and 
(ii) the smeared crack band model by Bazant & Oh 
(1983). In Figure I the two models are outlined with 
linear softening for simplicity. The softening behav
iour described by the two models is widely accepted 
to be identical, however, there are computational dif
ferences. 
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Figure I. Linear softening models. (a) Fictitious crack mode'. {b) Crack band model. 

2. 1 Basic assumptions 

From Figure I a few basic features for the softening 
curves are recovered. It is well known that the area 
under the er-w curve equals the fracture energy GF. 

For the linear softening we denote the fracture en
ergy with subscript 1, GF1 = f,w112. The area under 
the cr-e curve equals the fracture energy per volume 
in the crack band, i.e. in order to obtain identical 
fracture energies for the two models it follows 

GFJ =.!.f,w, =~f,e, = 
2 2 

= ~ f,2 (I+~)= he J,2 !J. 
2 E E., 2 E e, 

(1) 

Note that the softening modulus E .. is treated as a 
positive value, contrary to the usual approach by Ba
zant. 

Hillerborg defined a characteristic length Leh = 
EGJlf,2 as a material property. For the linear soften
ing curve Alvaredo & Torrent (1987) defined a simi
lar characteristic length based only on the initial 
slope of the er-w curve: 

/. = EGfl = Ew1 = h., E., + E = he ~ 
' f,2 2/1 2 E., 2 e, 

(2) 

The initial portion of the softening curve is recog
nized to be of major importance to the modulus of 
rupture, i.e. it is sufficient to apply linear softening 

when considering the modulus of rupture. Thus, the 
remaining part of the softening curve mainly affects 
the post-peak behaviour. 

2.2 Brittleness number 

In order t~ c~mp~ the two _models further a simple 
example 1s mvest1gated (Fig. I). A specimen of 
length h is e longated until f, is reached followed by 
softening either in a discrete crack or in a c rack band 
of width he (S h). The post-softening elongation of 
the specimen is written as 
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(3) 

:-Vhere subscript f denotes fracture strain. By insert
mg the following constitutive relationships 

a (w) = 11 ( 1 -~). 
Wt 

(4) 

and rearranging, identical relationships between the 
localized elongation and the total elongat.ion are ob
tained: 



( ) "l Ew1 l,Jl _!:f,_J = w{l-B) 

h E-81 = . (5) 

h"l·r (1-.!!._____s_J = h,.c 1 (1- B) 
h" E .. +E 

where the brittleness number B, as defined by Ulfk
jaer et al. ( 1995), is inserted: 

h 
B = - 0.SB.SI 

211' 
(6) 

The length h is interpreted as the width of an elastic 
influence zone around the fracture zone. Ulfkjaer et 
al. ( 1995) found that for bending of a beam h=D/2 
gives a satisfactory correspondence with FEM based 
calculations, however, a more sophisticated model is 
suggested later in the present paper. 

When B=O, the material acts as elastic-plastic and 
when B= I it becomes perfectly elastic-brittle. The 
brittleness number includes both the material frac
ture energy and the structural size, thus, a high num
ber is obtained by either small fracture energy and/or 
large size. 

The situation B=O corresponds to the total elonga
tion and the fracture zone elongation being identical. 
In the opposite situation B=l the material fracture 
zone cannot dissipate the elastic energy and the fail
ure is sudden. Note that in case of large values of h 
the numerical value of B may exceed unity, which is 
of course meaningless. However, in this case the up
per limit B=I is applied. 

(a) 

3 BENDING ANALYSIS 

A rectangular cross-section of thickness t and depth 
D is analysed and the Bemoulli-Navier assumption 
is applied. The cross-section is subjected to a curva
ture K (Fig. 2). Both Chuang & Mai (1989) and Ulfk
jaer et al. (1995) have solved the bending problem 
analytically. The former used the smeared crack 
band model and the latter the fictitious crack model. 
Furthermore, Chuang & Mai applied a general 
power-law softening curve while Ulfkjaer et al. ana
lysed a linear curve. Here we adopt the solution 
scheme provided by Ulfkjaer et al. ( 1995) but it is 
emphasized that both solutions yield basically the 
same result despite slightly different normalisations. 

It is noted that Chuang & Mai (1989) did not rec
ognize any size-effect on the modulus of rupture be
cause they implicitly assumed h=hc in Equation 5 
and thus, the width of the elastic influence zone was 
treated as a material property. 

The modulus of rupture is defined as 

f=6M. (7) 
' tD2 

where Mu =ultimate bending capacity. 
Before the ultimate capacity is reached the cross

section behaves as linear-elastic in accordance with 
the following non-dimensional equation 

tD 3 

M(K)=-EK ~ 
12 

m(B)= 6M(K) =DK =B 
f 1tD

2 2c, 

(8) 

(b) (c) 

D 

Figure 2. Beam cross-scc1ion, (a) Slrains, (b) stresses and (c) geometry. The ha1ching symbolises the fictitious crack. 

715 



0 2 4 5 

Normalised curvmurc 0 

Figure 3. Examples of m-0 curves wi1h vurious B. The end 
poinls of the curves correspond lo 0« 

3. 1 Softening of the fracture zone 

The softening of the tensile fibre starts when m(K)=l 
(i.e. when DK=2s, in Equation 8 and a fracture zone 
of depth a1 starts to grow (Fig. 2). For a given curva
ture, balancing the compressive and tensile stresses 
over the cross-section yields the extension of the 
fracture zone. The following equation is ea5ily ob
tained 

~ ~ Il e; a I 
DK\1- af} -2e, +-a1 = 0, a1 = -

E D 
(9) 

where E and e, are given in Figure 1 and 6.cr repre
sents the drop in tensile stress at the outermost fibre, 
de fined as 

B 
Ac; = f,1 -c;(w) = EDKa1 -

·1- B 
( 10) 

where Equations 4 and 5 are applied . For the crack 
band model !lo reads the same, a~ a result of the 
previous definition of B. Inserting Equation 10 in 9 
the parabolic equation presented by Ulfkjaer et al. 
(1995) is obtained, which is to be solved for f1.f 

a} (I ) 
l - B - 2a1 - B-1 = 0, (1 1) 

where the normalised curvature 0 from Equation 8 is 
inserted.. Expressions for utand the bending moment 
are taken from Ulfkj aer et al.: 

a1 =l- B- .,/(1- BXl/B - B) 

[
2a

3 l m(8) =8 ._l_-6a1 +4 - 3, 
1- B 

0 ~ l 
(12) 

See Figure 3 for a few examples of the m-9 curves. 
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The above expressions are valid as long as the 
fracture zone has not softened completely, i.e. unti l 
Ao in Equation 10 reaches};, corresponding to 

Ile; = f , e> B. = 1+ ..JB 
'· 2B 

( 13) 

When the curvature exceeds 0c the "real" crack starts 
to grow, however this solution is not pursued here, 
see Chuang & Mai (1989) and Ulfkj aer et al. ( I 995). 

The following limit cases are found: 
For B-+0 one find~ a1 -+ 1-0-112 and 0c-+oo. The 
derivative dm/d0 -+ e-312 of the m-9 curve is al
ways positive. 
Thus, the peak of the m-0 curve is calculated a~ 
m(9-+ oo,B=O) = 2(3 - 0"112

) - 3 = 3, being the 
welt known asymptotic elastic-plastic small-size 
behaviour, see e.g. Olsen ( 1994). 

2 For B-+ l one obtains a.j-+O and at the peak mo
ment it is found numerically that o../( 1-B)-+'A. 
Thus, the peak value of m equals l in this case . 
These asymptotic values for the modulus of rup
ture are identical to those applied by Planas et al. 
(1995). 

4 MODULUS OFRUPTURE 

From the expressions in Equation 12, the bending 
moment versus curvature is obtained. The peak 
value of m is by definition equal to the ratio between 
the modulus of rupture and the tensile strengthf,/J,. It 
can be found by differentiation of Equation 12, but 
no analytical closed form solution has been obtained. 

From comparisons with FEM based calculations 
on beams under three-point bending Ulfkjaer et al. 
(I 995) concluded that h=D/2 is a plausible value in 
order to obtain agreement on the complete load
deflection curves and not just on the peak load. Ap
plying this simple model on Equation 6 the brittle
ness number equals 

B =_!!_=]._ D 
21, 4 l, 

( 14) 

In Figure 4 the f,lf; values obtained from the peak 
values o f Equation 12 are depicted as a function of 
Dll1 defi ned in Equation 14. Furthermore, the exten
sion of the fracture zone and the normalised stress 
drop is shown. The fracture zone is seen to approach 
unity for small-size (pla~tic) behaviour and zero for 
large-size behaviour. The stress drop 6.cr is seen to 
increase continuously from zero to f,12 within the 
same range. This is contrary to what Planas et aL 
(1995) reported, viz . !lo increasing with Dll1 to a 
maximum of approximately f/3 at D/11=0.5 followed 
by a decreasing 6.u. 
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Figure 4. Modulus of rupture, fl/, versus D/11 and correspond
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Figure 5. Modulus of rupture,f..tf, versus D/11• 

Planas et al. (1995) provided a general expression, 
based on FEM calculations, accommodating both 
small- and large-size asymptotic behaviour (Fig. 4): 

f , -p+ 3-P+99D/I1 

f, - (1+2.44 D/l, X1+87 D/l,) 
(15) 

where ~ = constant talcing into account that not pure 
bending conditions exist. However, in the present 
analysis Jl= I is applied. The difference between 
Equations 15 and 12 in Figure 4 is mainly due to the 
rather crude assumption in Equation 14 giving an 
abrupt change in the behaviour of Equation 12 at 
D/l1=4 (B= l) whereas Equation 15 models a smooth 
asymptotic large-scale behaviour. In order to avoid 
this abrupt change an exponential relationship be· 
tween B and D/11 is suggested: 

B= l - exp{-.!_D} <=> D =~Hn{I -B} 
4 ' · t, 

(16) 

where the correct asymptotic behaviour is main
tained. The result of combining Equation 16 with 
Equation 12 is shown in Figure 5. 

The B-D!l1 relationship of Equation 16 is depicted 
in Figure 6. The definition B=h/(211) implies that the 
slope of the B-D/11 relationship is proportional to the 
ratio h/D, i.e. h/D decreases with increasing D. 

Planas et al. (1995) also discuss several simpli
fied expressions having various degrees of accuracy. 
Basically these are of the form originally suggested 
by Hillcrborg and co workers (Fig. 5): 

fr = fJ+ fJ (17) 
f, 0.85 + 2.3 D/t, 

where the constants in the denominator are fitted to 
FEM results. Generally these simplified models are 
found plausible for the large-size behaviour and fail 
to model the small-size asymptotic behaviour. Fur
thermore, Planas et al. ( 1995) discuss the approxi
mate expression given by Bazant & Li ( 1995) to
gether with the Jenq & Shah two-parameter-model 
and Carpinteri's multifractal law. However, these 
models are not treated in the present analysis. 

5 PRACTICAL APPLICATIONS 

In the previous sections l1 is considered to be a mate
rial property, governed by the initial part of the ten
sile softening curve. The question is now: what is the 
value of l1 for practical concrete mixes? 

The CEB-FIP Model Code ( 1991) has recom
mendations for the tensile properties of concrete. 
The Model Code reoommends a bi-linear cr-w curve 
where the area under the curve depends on the grade 
of concrete and the aggregate size, see also Bazant & 
Planas ( 1998). Section 7 .2. Using the initial part of 
this curve l1 is obtained as 50-60 % of the Hillerborg 
characteristic length lch· 

In Figure 6 the range of Dll1 is depicted for typi
cal beam sizes for two different concretes. If a typi
cal laboratory beam-size of 100-200 mm is consid
ered, it is seen that D/l1 is above 0.3 corresponding 
to the interval where the size-effect is most pro
nounced, cf. Figure 5. 

717 

5.1 Code of practice 

Knowledge of the size-effect of the modulus of rup· 
ture is only included in a few concrete codes of prac
tice for design (Fig. 7). The tensile bending strength 
of plain concrete is of course not used extensively as 
the beams normally are reinforced with steel. How
ever, the modulus of rupture is for instance used to 
define the minimum reinforcement requirement by 
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ensuring that the tensile reinforcement is capable of 
carrying lhe cracking moment of a beam. The Danish 
concrete code of practice DS 41 I ( 1999) uses f ,=2f, 
to define the minimum reinforcement, which is a 
rather conservative estimate (Fig. 5). There have 
been several investigations including the size-effect 
in the minimum reinforcement requirements for con
crete beams . However, this subject is beyond the 
scope of the present paper, the reader is referred to 
Bosco et al. (1990) and Bazant & Planas (1998). 

In Figure 7 the size-effect expressions adopted by 
OS 411 (1999) and the CEB Model Code (1991) are 
depicted along with the analytical solution in the 
present paper. OS 411 utilizes D-0·25 proportionality 
and the Model Code applies D-0·1. The latter obvi
ously captures the size-effect better than the former. 
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Figure 7. Size.effect comparison between codes of practice and 
analytical model: (a) 11=250mm and {b)l1=100mm. 

6 CONCLUSIONS 

An analytical bending analysis of rectangular plain 
concrete beams is presented. Jt is shown how the fic
titious crack model and the crack band model yield 
identical solutions. The conclusions are: 
I Expressions for the bending moment and the 

depth of the fracture zone arc given, based on the 
Bernoulli-Navier assumption. These expressions 
depend on a single brittleness number B, includ
ing the beam size and the material softening 
behaviour. 

2 By choosing a simple dependency between B and 
the beam depth D, an excellent agreement with 
FEM-ba-ied expressions for the modulus of rup
ture is obtained. Furthennore, the correct asymp
totic behaviour for plastic small-size behaviour 
and brittle large-size behaviour is obtained. 

3 The analytical solution includes expressions for 
the stress distribution and the size of the fracture 
zone. 

REFERENCES 

Alvaredo, A.M. & Torrent, R.J. 1987. The effect of the shape 
of the strain-softening diagram nn the bearing capacity of 
concrete beams. Materials and Structures (RILEM) 20: 
448-454. 

Bazant, Z.P. & Oh, B.H. 1983. Crack band theory of concrete. 
Materials and Structures (RILEM) 16(93): 155-177. 

Bazant, Z.P. & Planas, J. 1998. Fracture and Site Effeet in 
Concrete and other Quasibri1t/e Materials. Boca Raton, 
USA: CRC Press. 

837.a.nt. Z.P. & Li, Z. 1995. Modulus of rupture: size effect due 
ro fracture initiation in boundary layer. Jounwl of Struc
tural Engineering (ASCE) 121 (4): 739-746. 

Bosco, C., Carpinteri. A. & Debernardi, P.G. 1990. Minimum 
reinforoement in high-strength concrete. Journal of Strnc-
1Ural Engineering (ASCE) 116(2): 427-437. 

CEB 1991. CEB-FIP Model Code 1990, Final Draft. Lau
sanne, Switzerland: Comitc Euro-International du Beton. 

Chuang, T. & Mai, Y.-W. 1989. Flexural behavior of strain
softening solids. /ntemational Jo1mwl of Solids and Struc
tures 25(12): 1427- 1443 . 

DS 41 I. 1999. Code of practice for the structural use of con
crete. (in Danish) Copenhagen, Denmark: Dansk Standard . 

Hillerborg, A., Modcer, M. & Petersson, P.-E. 1976. Analysis 
of crack formation and crack growth in concrete by means 
of fracture mechanics and finite elements. Cemem and Cnn
crete Research 6(6): 773-782 . 

718 

Neville, A.M. 1995. Properties of Concrete. 4th edition, Har
low, England: Longman Group Ltd. 

Olsen, P.C. 1994. Some commenl~ on the bending strength of 
concrete beams. Magazine of Concrete Ri•search. 46(168): 
209-214. 

Planas, J ., Guinea, G.V. & Elices. M. 1995. Rupture modulus 
and fractwe properties of concrete. In F.H. Willmann (ed.), 
Fracture Mechanics of Concrete Strnctures; Proc. FraM
CoS-2: 95-1 IO. Freiburg, Germany: Aedificatio Publishers . 

UUkjaer, J.P., Krenk, S. & Brincker, R. 1995. Analytical model 
for fic titious crack propagation in concrete heams. Journal 
of Engineering Mechanics. (ASCE) 121(1): 7-15. 


