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ABSTRACT: This paper reports on the development of the Rigid-Body-Spring Network (RBSN) 
approach, which can be categorized as a lattice model, and its application to analyzing quasi-brittle failure 
of cement-based composites. Attention is first given to elastic stress analysis, which is fundamental to 
modeling crack initiation and propagation. The potential for modeling crack propagation across random 
networks is demonstrated through comparisons with theory and mode I fracture test results. Due to the 
implementation of a crack band model within the RBSN, crack propagation is objective with respect to 
network component size and geometry. The latter part of the paper presents preliminary efforts toward 
modeling compressive failure under uniaxial loading, as well as work towards extending the analysis 
framework to three dimensions. 

1 INTRODUCTION 

A variety of numerical models based on primitive, 
discrete structural components (e.g. lattice mod­
els) have been used to clarify fracture phenomena 
within cement-based materials, such as concrete 
(Schlangen and van Mier, 1992). These studies 
have provided useful, often realistic, interpreta­
tions of fracture, particularly with respect to 
the mechanisms contributing to tension softening. 
There is currently a good potential for applying 
such models to general loading cases, including 
those leading to compressive failure. 

This paper reports on the development of 
the Rigid-Body-Spring Network (RBSN) approach 
and its application to analyzing quasi-brittle fail­
ure of cement-based composites. After describing 
the basic concepts of RBSN, attention is given 
to its abilities for elastic stress analysis, which 
is fundamental to modeling crack initiation and 
propagation. Random lattice networks generally 
exhibit spurious heterogeneity that can over­
shadow important aspects of material behavior, 
particularly when modeling fracture in homoge­
neous materials (or homogeneous phases within 
composite materials). This issue is resolved 
through the use of a crack band model for fracture 
within the RBSN approach. Analyses of concrete 
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compact tension specimens are conducted to demon­
strate model objectivity with respect to size 
and geometry of the network components. The 
paper concludes with an analysis of concrete 
failure in uniaxial compression and preliminary 
work towards extending the RBSN to a three­
dimensional analysis framework. 

2 RBSN FORMULATION 

The RBSN is based on the Rigid-Body-Spring 
Model (RBSM) developed by Kawai (1978). lu 
the RBSN approach, the material domain is 
discretized using a Voronoi diagram on a set of 
randomly distributed points, or nuclei (Fig. 1): 
network degrees of freedom are defined at the 
nuclei. System flexibility is lumped into zero-size 
spring sets that interconnect the rigid Voronoi cell:; 
along their common boundary segrnents, as shown 
in Figure 2. Each spring set consists of a normal. 
tangential, and rotational spring oriented local to 
the boundary segment. 

The RBSN is best categorized as a lattice 
model, with the Voronoi cell nuclei acting as lattice 
sites. The basic elern.ent of the RBSN can be 
viewed as a special type of beam-spring element 
composed of two rigid arm:; connected by the 



Figure 1. Voronoi discretization of a multi-phase material 

a) 

Figure 2. RBSN basic element: a) rigid cell depiction; and 

b) equivalent beam-spring element 

zero-size spring set, as shown in Figure 2b. The 
distance between the Voronoi cell nuclei, h, and 
the length of the common boundary segment, £, 
are used to scale the spring stiffnesses 

Etl/h 

Etl/h 

kq, knl2 /12 

(1) 

where E is the elastic modulus of the continuum 
material and t is the specimen thickness. System 
equilibrium equations are constructed from each 
elemental unit (i.e. each two-cell subassembly) 
using the direct stiffness method. 

Despite the appearance of a deformed RBSN, 
contact algorithms are not part of the formulation. 
In that sense, the RBSN is quite different from 
approaches such as the Distinct Element Method, 
Discontinuous Deformation Analysis, and methods 
for particle dynamics, all of which involve routines 
to identify current neighbors and contact condi­
tions as the problem topology changes. 

3 ELASTIC STRESS ANALYSIS 

3.1 Stress retrieval algorithm 

The ability to extract accurate stress measures 
from the network is essential for both analysis 
and understanding the model behavior. Schlangen 
(1995) has computed stress measures at the nodal 
sites of a beam lattice, rather than in the beams 
themselves. In a similar manner, consider a 
Voronoi cell subjected to intercell spring forces, 
Fni and Fti, on each boundary segment i (Fig. 3). 
These are the forces in the normal and tangential 
springs shown in Figure 2. Stress is computed by 
sectioning the Voronoi cell through its nucleus and 
then invoking force equilibrium on either portion 
of the cell. With reference to Figure 3, the nornial 
and tangential forces acting on a cut plane through 
the cell nucleus are (Bolander et al., 1999) 

N 

Fne = L Ri[Fni cos(7r - a;+ B) + Fti. sin( a; - B)] (2) 

N 

Fte = L Ri[Fni sin(7r - ai - B) + Fti cos(ai + B)] (3) 
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where N is the number of cell boundary segments. 
Ri = a;/bi when boundary segment i intersects the 
cut plane; otherwise, Ri equals 1 or 0 depending 
on whether boundary segment i is entirely above 
or entirely below the cut plane, respectively. The 
normal and tangential stresses acting over the cut 
plane are 

(}'e = Fne/Ae 

Te= Fte/Ae 

(4) 

(5) 

where Ae is the area of cross-sectional cut. The 
((}'e, Te) pairs produced by varying (} from 0 to 7r 

form a Mohr's circle representation of the stress 
state at the cell nucleus. As shown later in this 
paper, and elsewhere (Bolander et al., 1999), stress 
maps produced from the RBSN are comparable in 
accuracy to those of constant strain triangle (CST) 
finite elements. 



~ 

Figure 3. Force resultants acting on a section through the 

cell nucleus 

Figure 4. Homogeneous membrane structure under com­

pressive loading 

3.2 Elastic uniformity 

The RBSN is elastically homogeneous under uni­
form straining (Bolander and Saito, 1998), as 
demonstrated by the following elastic analysis. 
Figure 4 shows a homogeneous membrane struc­
ture that is free of lateral restraint along the load 
platen surfaces. Imposing a vertical displacement, 
-5, on the top platen produces a uniform compres­
sive strain of magnitude 5 / L. Figure 5a shows the 
Mohr circle representation of stress at each of the 
480 cell nuclei, as provided by the stress retrieval 
algorithm for B = mr/90 where n = 1, ... , 90. 
No lateral tension is produced, in accordance with 
theory. 

3.3 Modeling Poisson effect 

To achieve elastic uniformity, the spring sets 
connecting the rigid cells must be isotropic (i.e. 
kt= kn, as shown in Eqs. 1). That being the case, 
however, the model exhibits no Poisson effect, as if 
Poisson ratio v = 0. Many important applications, 
such as the compressive response of heterogeneous 

materials studied later in this paper, require an 
accurate modeling of Poisson effect. 

By setting kt = 71kn for all spring sets, the 
coefficient 71 can be adjusted to achieve the desired 
macroscopic Poisson ratio (Kiyosue, 1995). For the 
network shown in Figure 4, 71 = 0.35 is required to 
achieve a macroscopic Poisson ratio of v = 0.2. For 
71 =/= 1, however, the network is no longer elastically 
uniform, since the local stiffness is biased by facet 
orientation. The resulting scatter in stress values, 
shown in Figure 5b, can be regarded as spurious 
heterogeneity of the system. Moreover, a proper 
point-wise representation of v is still missing. The 
following section introduces means for accurately 
modeling both global and local Poisson effect 
within the random lattice, without sacrificing its 
elastic homogeneity. 

3.4 RBSN-FE hybrid apprnach 

The basic idea is to overlay the RBSN with 
constant strain triangle (CST) finite elements 
arranged according to the Delaunay triangulation 
of the Voronoi nuclei (Fig. 6). The material 
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Figure 5. Mohr circle representation of stress at cell nuclei: 

a) RBSN model (r; = l; b) 77 = 0.35 



generator points (nuclei) 

Voronoi tessellation 

Dela.unay tessellation 

Figure 6. Dual tessellations of a set of generator points 

relations for the CST elements are defined so that 
these elements only contribute Poisson effect to 
the network. That is, the RBSN (with v = 0) 
is overlayed with CST finite elements with the 
following material matrix: 

C* = C(E, v) - C(E, v=O) (6) 

where C(E, v) is the conventional material matrix 
used for plane stress analysis 

C(E ") ~ r ,~, 
vE 0 1-;:72 

E 0 (7) 
' 1-v2 1-v2 

l 0 0 E 
2(l+v) 

By the principle of superposition, the result is 
a hybrid system that has the desired elastic 
properties. For v = 0, the overall formulation 
reverts to that of ordinary RBSN. 

For the previous example shown in Figure 4, 
the vertical displacement -6 of the top platen 
produces a lateral strain of v6 / L, both globally 
and in a local sense, as measured between the 
nuclei of contiguous cells. Stresses retrieved from 
the model also match theory, provided that the 
stresses from the CST elements are added to 
the stresses extracted from the RBSN. Since the 
CST stresses are determined within each element 
domain, simple averaging is used to determine the 
CST stress contributions at the cell nuclei. The 
spring network actually goes into lateral tension 
while the finite elements are in compression. The 
sum of the two lateral stress components is zero, 
in accordance with theory. 

3.5 Stress analysis of heterogeneous systems 

The utility of the RBSN hybrid approach is 
demonstrated in the following example. The 
Voronoi discretization, shown in Figure 7, is used 
to perform RBSN-FE and finite elment stress 
analyses for a specimen with a single, centrally 

located inclusion. For objective comparison, 
the CST elements are defined by the Delaunay 
tessellation of the Voronoi diagram nuclei. Here, 
too, we assume no lateral restraint along the 
loading surfaces. The matrix phase and inclusion 
phase are assigned Young's moduli of 20 GPa and 
62.5 GPa, respectively. A Poisson ratio v = 0.2 is 
assigned to both phases. 

The principal tensile stress distributions for 
the hybrid RBSN approach and the CST finite 
elements are similar, as shown in Figure 8. Higher 
tensile stresses appear to the sides of the inclusion. 
whereas for the case of v = 0 (Thomure, 2000). a 
higher tensile stress region forms above and below 
the inclusion. This suggests that Poisson ratio 
has a significant effect on the stress distribution. 
and possibly fracture processes, even though both 
phases have been assigned the same Poisson ratio. 
Due to the modular mismatch between the phases, 
accurate representation of Poisson effect is not 
a secondary issue in modeling the compression 
specimens, even though the Poisson ratios of the 
matrix and inclusions are similar. 

4 OBJECTIVE FRACTURE MODEL 

The ability to represent fracture objectively, with 
respect to average element size and network 
geometry, is a fundamental requirement of the 
fracture model. This requirement is realized by 
implementing a crack band model within the 
RBSN. 

776 

4.1 Crack band modeling of fracture 

Figure 9 shows normal and tangential spring set 
forces for a two-cell assembly. For primarily tensile 
loadings, the crack band is assumed to form 

Figure 7. Voronoi cell discretization of membrane with 

circular inclusion 



0.05£T 

0.025£T 

0.0£T 

0.05£T 

0.025£T 

0.0£T 

Figure 8. Stress contours for concrete specimen with one 

inclusion 

perpendicular to the resultant of this force pair, 
FR. The crack band width is h cos BR, which is 
the distance between the corresponding cell nuclei 
in the direction of FR. The crack band length 
is £cos BR, where £ is the length of the common 
boundary segment. The average stress acting over 
the crack band is £TR= FR/(t £cos BR), where tis 
the material thickness. Stress £TR and a softening 
relation (as shown in Figure 10, for example) are 
then used to define the fracture criterion. 

During each load step, the elastic properties of 
critical spring sets are degraded, in accordance 
with the softening relation, through a series of 
partial fracture events. One fracture event is 
permitted per computational cycle. To realize 
constant fracture energy consumption for different 
cell sizes, damage is assumed to be uniformly 
distributed over the element length according to 
the crack band concept of Bazant and Oh (1983). 
Strain values characterizing the softening response 
are dependent on crack band width 

er W 
E =---

hcosBR 
(8) 

Figure 9. Crack band model for objective fracture criterion 

(Jl 

ft = 3.12 lVIPa 
0-1 = 0.36 MPa 

w1 = 0.051 rnrn 

w2 = 0.276 rnrn 

Figure 10. Bilinear softening diagram and parameters 

extracted from inverse analysis 

where Ecr is the crack strain and w is the crack 
opening displacement, as defined by the softening 
diagram. 

4.2 Numerical analysis 

Compact Tension (CT) fracture specimens tested 
by Wittmann et al. (1990) were first analyzed 
using a RBSN model with an embedded straight 
crack (Fig. lla). The softening parameter val­
ues, indicated in Figure 10, were determined 
through an inverse analysis procedure, based on 
a Levenberg-Marquardt minimization algorithm 
(Thomure, 2000). With the derived parameter set, 
a forward analysis reproduces the experimental 
result, as shown in the Figure 12. 

Using the same softening parameters, the anal­
ysis is repeated using the quasi-random discretiza­
tion over the ligament length shown in Figure llb. 
The load-displacement results agree well with 
those of the benchmark case. The reasons for 
this behavior can be explained by studying energy 
consumption along the crack trajectory. 

An energy value is associated with each discrete 
fracture event by monitoring the change in 
reactive force at the load points under constant 
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Figure 11. Mesh designs: a) straight line discretization 

along ligament length; b) random discretization along 
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Figure 12. Load versus CMOD response 

1.5 

displacement. This information is stored and 
later retrieved in a post-processing module, so 
that the distribution of local energy consumption, 
9F, can be viewed at any load stage. Figure 13 
shows distributions of energy consumption (up 
through a load point displacement of 2.25 mm) for 
the straight crack and random crack geometries. 
Each segment of the energy distribution plot 
corresponds to a damaged spring set. The energies 
have been normalized by GF, the area under the 
bilinear softening diagram (Fig. 10). 
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a) 0 1 2 3 9F/GF 

b) 0 1 2 3 9p/GF 

Figure 13. Fracture energy distributions along ligament 

length for: a) embedded straight crack path; b) random 

discretization 

As expected, the straight crack analysis pro­
duces uniform energy consumption along the crack 
trajectory. For the random geometry analysis, the 
energy distributions are nearly uniform along the 
principal crack trajectory, with 9F/GF ~ 1.0. 
Crack propagation through the random mesh pro­
duces nearly the same results as crack propagation 
along a smooth, predefined pathway. This is 
desirable in that network random geometry does 
not represent any structural features within the 
material. 

5 COMPRESSIVE FAILURE OF l\!IODEL 
CONCRETE SPECIMENS 

As a first step toward modeling concrete com­
pressive failure, the RBSN is being used to 
simulate failure in two-dimensional model concrete 
specimens tested by Choi and Shah (1999). The 
specimens consisted of a rn.ortar nrntrix contain­
ing cylindric inclusions that extend through the 
specimen width, which was kept small to minimize 
three-dimensional effects. The specimens were 
subjected to uniaxial compression by displacement 
controlled loading, with minimal lateral restraint 
due to the load platen surfaces. 

The specimen considered here contains one 
centrally located, stiff inclusion, similar to the 
arrangement analyzed in Section 3.5. The failure 
pattern observed during testing was measured 



a) 

Figure 14. Vertical splitting of model concrete with one in­

clusion : a) localization of surface displacements measured 

during testing; b) RBSN simulation 

using Subregion Scanning Computer Vision (Choi 
and Shah, 1999). The technique is based on Digital 
Image Correlation and provides high-resolution, 
full-field mappings of specimen surface displace­
ments. Here, only the closely spaced contour lines, 
indicating surface displacement localization, are 
shown in Figure 14a. 

The RBSN model now represents a three­
phase composite consisting of a mortar matrix, an 
inclusion, and the matrix-inclusion interface. Fig­
ure 14b shows the failure pattern obtained using 
an earlier version of the RBSN. Fracture initiated 
along the weak interface and, even with simple 
breaking rules governing the fracture modeling, 
the numerical specimen exhibits a damage pattern 
similar to that witnessed during testing. Shear 
cones above and below hard inclusions have been 
observed within other experimental programs, as 
well (Stroeven, 1973, van Mier, 1984). 

6 THREE-DIMENSIONAL ANALYSIS 

Concrete materials and fracture processes are 
three-dimensional (van Mier, 1997). Compressive 
failure is affected by the mechanical properties, 
spatial distribution, and volume fractions of the 
constituent phases, as well as the structural 
boundary conditions of the specimens considered. 
The preceding two-dimensional lattice networks 
are therefore applicable to only a small set of 
the current research needs in concrete modeling. 
Fortunately, apart from some of the challenging 
material modeling issues, there are few conceptual 
barriers to three-dimensional concrete modeling 
with RBSN. In fact, the Kawai RBSM approach 
has been used to simulate the three-dimensional 
behavior of brittle solids with microinclusions 
(Kiyosue, 1995). Foreseeable challenges include 
those associated with computing time and memory 
requirements for solving the large linear equation 
sets, as well as the pre/post-processing demands 
that accompany three-dimensional analysis. 

Figure 15 shows a Voronoi discretization of 
a three-dimensional homogeneous body, free of 
redundant constraints. Elastic uniformity of the 
associated RBSN is studied by subjecting the body 
to a uniform temperature loading. Figure 16a 
shows the histogram of axial strain, E, between 
each pair of contiguous cell nuclei within the 
domain, normalized by the temperature strain Et· 

All measured strains are equal to Et, indicating 
the abilities of RBSN for elastic stress analysis 
described in Section 3 are likely to be valid for the 
three-dimensional setting, as well. If the network 
degrees of freedom are defined at the cell volume 
centroids, rather than at the nuclei, then the 
temperature loading produces spurious straining 
throughout the network, as shown by Figure 16b. 

Figure 15. Three-dimensional Voronoi diagram (320 cells) 
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Figure 16. Strain production in thermally loaded three­

dimensional networks: a) RBSN; b) network degrees of 

freedom defined at cell volume centroids 

7 CONCLUSION 

This paper overviews recent development of the 
Rigid-Body-Spring Network approach and its ap­
plication to modeling fracture in cement-based 
composites. Attention has been given to accurate 
modeling of the elastic properties of both homo­
geneous and heterogeneous media. In particular, 
a hybrid approach has been developed, which 
involves finite element technology to embed a con­
trollable Poisson effect within the RBSN, without 
sacrificing elastic uniformity of the network. An 
objective means of modeling fracture is based on 
the implementation of a crack band model within 
the RBSN. During mode I cracking, fracture 
energy consumption along the crack trajectory is 
uniform, independent of the size and orientation 
of the lattice components. 

This work provides the foundation for analyzing 
more complex loadings and material distributions, 
both explicitly defined and through probabilis­
tic description of the microscopic strength and 
stiffness distributions. Preliminary work, pre­
sented here, indicates the potential of RBSN for 
identifying and interpreting the mechanisms of 
compressive failure in cement-based composites. 
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Ultimately, a three-dimensional description of the 
material and failure process is necessary. As a first 
step in this direction, this paper has demonstrated 
elastic uniformity of a three-dimensional RBSN 
under uniform thermal loading. 
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