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Numerical modelling of the fracture behaviour of limestone 
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ABSTRACT: Numerical simulations of the double-edge notched specimen subjected to tension are performed. 
The cohesive surface methodology is used for the simulation of the tensile tests. A plasticity law proposed by 
Carol et al. (Carol et al.1997) is introduced as constitutive law for the cohesive surfaces. The influence of the 
discretisation and of the material parameters defined in the model are studied. Finally, the numerical simula
tions are compared to the experimentally observed results. 

I INTRODUCTION 

In this paper, tensile tests on double-edge notched 
specimens are analysed experimentally and computa
tionally. The specimens are made of limestone called 
"Massangis". During experiments both the local, i.e. 
the crack path, as well as the global response, i.e. 
load-displacement curve, is recorded. These results 
are used as verification for numerical simulations 
performed within the finite element context using the 
cohesive surface methodology. A plasticity model 
proposed by Carol et al. (Carol et al. 1997) is used as 
the constitutive law for the cohesive surfaces. Also 
the influence of model parameters and the finite ele
ment discretisation is studied. 

2 EXPERIMENTAL SET-UP 

Rectangular double-edge notched specimens are 
subjected to a tensile loading. The geometry of the 
specimens is given in Figure 1. The thick:i-1ess of the 
specimen is 11 mm. Two symmetric notches were 
made in the specimen in order to trigger the fracture 
process in the middle of the specimens. Two Linear 
Variable Differential Transducers (L VDT) are used 
to measure the deformation. These are placed on 
both sides of the specimen, as shown in Fig. 1. The 
vertical measuring range of the L VDT' s is 20 mm. 
The average signal of the L VDT is used as the con
trol signal for the test. All tests are performed with 
displacement control at a rate of 0.3 µmis. 

The specimens are glued to the loading platens so 
that rotation of the boundaries is eliminated. 
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Figure 1. Geometry of the specimens and place of LVDT (All 
dimensions are in mm) 

3 EXPERIMENTAL RESULTS 

Some typical load-displacement curves obtained 
during the experiments are given in Figure 2. After 
reaching the peak load, the load-displacement curve 
shows a fast decreasing part, which indicates very 
brittle behaviour, followed by a smoothly decreasing 
part. 
A typical crack path is shown in Figure 3. It can be 
seen that only one crack occurs. Crack bridging is 
not observed during the tests. 
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Figure 2. Load-displacement curve 

Figure 3. Typical crack path 

4 COHESIVE SURFACE MODEL 

In the numerical simulations cracldng is assumed to 
start when the stresses in a material point reach the 
proposed failure surface. Carol et al. (Carol et al. 
1997) proposed a failure surface given in terms of 
tractions, normal and tangential to a plane with a 
normal n: 

F =~ -(c-T,, tamp)2 +(c-f, tan<p)2 (1) 

in which T={ T"'T,) are the normal and tangential 
traction, respectively, c is the cohesion, Ji is the ten
sile strength and <p is the angle of internal friction. In 
the Tn - T, space, the failure surface has a hyperbolic 
form. In fact, the failure surface is a smooth version 
of the combination of a Mohr - Coulomb criterion 
and a tension cut-off criterion. 

The cohesion and the tensile strength control the 
evolution of the failure surface. These model pa
rameters are a function of the energy dissipated dur
ing the fracture process. This energy is defined as: 

(2a) 

for tension and 

dW =TdLl.c'[I-IT,, tan<pl] 
er I I ~ 

(2b) 

for compression with 

We,= f dWcr (2c) 
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where dLi={ dLl.n"', dLl.,0') are the normal and the tan
gential separation of the crack, respectively. For 
compression, only the shear work, without basic 
friction, is taken into account. 

The tensile strength and the cohesion change with 
the energy dissipated during fracture according to : 

Ji = ft{ 1 - ~c~l ) 
(3a) 

(3b) 

where Gp and Gp1 are the mode I and mode n frac
ture energy respectively, fio is the initial tensile 
strength and c0 is the initial cohesion. 

The direction of the inelastic deformations at each 
point is assumed to be perpendicular to the plastic 
potential surface. The following non-associative 
plastic potential is assumed (only the derivatives 
with respect to the tractions are given since they are 
used in the computations) : 

a(Jg = 2 tan qi(c0 -T,, tan cp) for Tn > 0 
T,, 

~=2c0 tan(1-~J 
CJT,, Tdu 

~=0 
CJT,, 

~=2T 
CJT, I 

(4a) 

(4b) 

(4c) 

(4d) 

For numerical reasons, a transition area between 0 
and Tctil is defined for the derivative with respect to 
the normal traction. When the normal tractions is 
smaller than Tctib dilatancy is not taken into account. 

The total deformation can be split up into an elas
tic and a plastic (cracked) part: 

(i = n,t) (5) 

The plastic deformation is defined as : 

(i = n,t) (6) 

where 'A, is the plastic multiplier. The plastic multi
plier can be obtained by the consistency equation, i.e. 
dF = 0. The rate equations are obtained following 
the classical elasto-plastic theory. The integration of 
the rate equations is done using an implicit Euler 
backward scheme (Crisfield. 1991). 



5 THE COHESNE SURFACE METHODOLOGY 

The numerical simulations are performed within the 
finite element context. Cohesive surfaces are em
bedded in the continuum and are discretised sepa
rately as was first proposed by Xu and Needleman 
(Xu and Needleman. 1994). Separate constitutive 
laws are defined for the surfaces and the continuum. 

5.1 Numerical implementation 

Although large strains are not expected in the bulk, 
finite strain effects may be important in the neigh
bourhood of crack tips. Therefore finite strains are 
taken into account in the continuum, using a Total 
Lagrangian description for which the incremental 
equilibrium equations are specified through the rate 
form of the principle of virtual work : 

f>.t J (tijOTJij +tiku.{oui.i }iv +f>.t J taMadS; = 
v m 

(7) 
Su 

[f tijOTJijdV + f TaMadS; - f t;Ou;dS 11 ] (a= n, t) 
V Si Su 

in which M is the time increment, V is the volume 
and s. is the outer surface of the body in the refer
ence configuration and S; is the current internal cohe
sive surface. The latter is the collection of all the co
hesive surfaces embedded in the continuum. The 
term between brackets is the equilibrium correction, 
which prevents drifting of the solution from the true 
equilibrium path. This drifting can occur due to the 
finite time increments used in the explicit time inte
gration scheme. For equilibrium, this term equals 
zero. 

For the continuum elements, elastic behaviour is as
sumed and is introduced through a hypo-elastic con
stitutive law in terms of the Second order Piola
Kirchhoff stress 7: = .fieiei and the Langrangian strain 
T/ = T/iie1 e1 : 

(8) 

in which ::zijkt is the material modulus tensor, which 
is expressed in terms of Young's modulus E and 
Poisson's ratio vfor an isotropic material. 

5.2 Indirect displacement control 

In this paper, the cohesive surface methodology is 
used to describe fracture in a double-edge notched 
(DEN) tensile bar. Because these experiments show 
a snap-back behaviour with respect to the applied 
loading, an Indirect Displacement Control technique 
(de Borst. 1987) is used. 

The set of equations can be rewritten as : 

[:: :;][ ~~J=[ ~! ]+[~~] (9) 

in which f>.Q1 and f>.QP are the free and prescribed 
degrees of freedom respectively. /:,.Ff is the incre
mental external force and Rf and RP contain the 
equilibrium correction and the reaction forces re
spectively. 

A load factor Lls is defined so that 

(10) 

where Iii / II = 1 and llQ P II = 1 . The solution is obtained 

as 

(11) 

The load factor Lls is obtained by controlling the in
crease of the average crack opening displacement of 
the notches, i.e. 

CMOD=HiiQJ,y -LiQJ,ytft +(iiQJ,y -.d.QJ . .1l) 
as explained in Figure 4. 

~ 
Figure 4. Nodes for indirect displacement control 

6 NUMERICAL RESULTS 

The geometry, shown in Fig. 1 is used in the numeri
cal simulations. Due to the limited thickness, a 2D 
model is used. Plane strain conditions are assumed. 
Rotation of the boundaries is restricted. 

6.1 Influence of the discretisation 

The influence of the discretisation is studied by using 
three different meshes, as shown in Fig. 5. For every 
mesh, an analysis is performed with the following 
model parameters: tensile strength fr = 6.2 MPa, co
hesion c = IO MPa, internal friction angle cp = 0.46 
rad, mode-I fracture energy Gp= 0.035 N/mm and 
mode-II fracture energy Gp1 = 0.15 N/mm. The 
Young's Modulus is taken E = 41.9 GPa and Pois
son's ratio v= 0.25. These values resulted in the best 
fit for the different meshes. 
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The resulting crack paths are shown in Fig. 5. The 
load displacement curves are given in Fig. 6. 



Figure 5. Crack path for mesh I, mesh 2 and Mesh3 

As can be seen in Fig. 5, the fracture paths for the 
different meshes are similar and resemble the ex
perimentally obtained crack path (see Fig. 3). Be
cause fracture can only occur following the finite 
element boundaries, a slight mesh dependence is in
troduced with respect to the crack path, but not with 
respect to the size of the finite element. The location 
and the path of the crack are unrestricted, since the 
crack can propagate along every finite element edge. 

When the load displacement curves are studied, 
small differences (within 7%) in peak load are ob
served. The post peak behaviour is a little bit under
estimated. It can be concluded that, when the cohe
sive surfaces are scattered throughout the volume 
randomly, i.e. the surfaces have random inclinations, 
the methodology has good predictive capabilities. 
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Figure 6. Load displacement curve for different meshes 

6.2 Influence of' the model parameters 

Finally, the influence of the model parameters is 
studied. For every mesh used in the previous section, 
the model parameters are changed. 
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Figure 7. Influence of model parameters for mesh I 
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Figure 8. Influence of model parameters for mesh 2 
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Figure 9. Influence of model parameters for mesh 3 

The most important influence is observed for the 
tensile strength and the mode-I fracture energy. This 
was expected since the test was a mode- I fracture 
test. It can be seen that for the three meshes a lower 
tensile strength results in a lower peak. For a de
crease of 15 % for the tensile strength, the decrease 
of the peak load is about 10 %. When the mode-I 
fracture energy is increased, the area below the load 



displacement curve also increases, resulting is a less 
steep descending branch. Also the peak load is af
fected. An increase of the mode-I fracture energy 
with 40 % results in an increase of the peak load of 6 
%. 

The influence of the mode-n fracture energy and 
the internal friction angle is negligible. The variation 
of the peak load is within 1 %. Sometim~s, little dif
ferences in the tail of the post peak behaviour are ob
served. 

A remarkable result is obtained by varying the co
hesion. In every example, the cohesion is increased 
from a value c = 10 Mpa to c = 30 Mpa. For mesh 1, 
this increase results in an increase of the peak load of 
4 %. For mesh 2 a comparable result is found. For 
mesh 3, a negligible increase of peak load is found 
(within 1 %). 

The variation of peak load, as a consequence of an 
increased cohesion, can be seen as a result from the 
methodology. Since the crack only can propagate 
following finite element boundaries, the different 
meshes can result in a different peak load. 

When we analyse the post peak behaviour, we ob
serve that every tail of the load displacement curves 
are affected when the cohesion is increased. For 
mesh 2, an explanation can be found in the crack 
path. Figure 10 shows that there is no unique crack 
path, but different smaller cracks. One can even_ o~
serve bridging. This results in higher energ~ d1ss1-
pation during the fracture process and explams the 
more ductile response. 

" Figure 10. Crack path for mesh 2 with increased cohesion 

It should also be noted that for mesh 2, most of 
the cracked cohesive surfaces are horizontal. In an 
inclined cohesive surface, both a normal and tangen
tial component of the traction is present. When the 
cohesion is bigger, it takes longer to reach the 
cracking surface as shown in Fig. 11. For mesh 2, 
the surfaces between the cracks are almost vertical, 
so a bigger load would be necessary to crack the sur -
faces. This explains the bridging. This phenome
non also results in a higher energy dissipation, and 
thus a more ductile response in the post peak behav
iour. 

It is clear that in this case the result is somewhat 
mesh dependent. As a consequence, a good choice of 
the model parameters is very important. 
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Figure 11. Influence of bigger cohesion in yield surface 

7 CONCLUSIONS 

In this paper, the cohesive surface methodology is 
used for the simulations of double edge notched ten
sile tests. The material law proposed by Carol et al. 
(Carol et al., 1997) was used as a constitutive law in 
the cohesive surfaces. 

In a first set of simulations, the influence of the 
discretisation was studied. It was shown that the in
fluence of the discretisation could not be ruled out 
completely. However the different responses for the 
different meshes showed a similar behaviour, and 
only small differences were found in peak load and 
post peak behaviour. 

Then the influence of the model parameters was 
studied. It was shown that for a mode-I test, the ten
sile strength and the mode-I fracture energy are the 
most important parameters. The influence of varymg 
the cohesion depends on the discretisation used. 

Generally, it can be concluded that the mesh is 
very important. For the simulation of fracture, the 
mesh must be fine enough and random, as already 
pointed out by Tijssens et al. [Tijssens et al: 2000]. 
This means that the inclination of the cohesive sur
faces must be randomly chosen. In this way, the 
mesh resembles the microstructure of the material 
and the best results can be obtained. 
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