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Process zone resolution by extended finite elements 

Milan Jirasek & Borek Patzak 
LSC, DCC, Swiss Federal Institute of Technology at Lausanne (EPFL), Switzerland 

A new adaptive technique suitable for problems with strain localization is proposed. The material behavior 
is described by a nonlocal damage model. The nonlocal formulation serves as an efficient localization limiter 
and leads to objective results, However, fine grids are necessary to resolve the bands of localized strains, and 
stress oscillations often appear in low-order elements due to a mismatch between the interpolation of local 
and nonlocal quantities. This calls for innovative adaptative procedures that go beyond the commonly used h­
adaptivity, The extended finite element method (X-FEM) is used to adaptively enrich the standard displacement 
approximation by incorporating special shape functions, A numerical example illustrating the new approach 
demonstrates the performance and accuracy of the method. It is shown that satisfactory results can be obtained 
even on a very coarse mesh with only a few added degrees of freedom corresponding to an enrichment by a 
regularized Heaviside function. 

INTRODUCTION 
Quasibrittle materials, such as concrete, rock, tough 
ceramics, or ice, are characterized by the development 
of nonlinear fracture process zones, which can be 
macroscopically described as regions of highly local­
ized strains. Continuum-based modeling of the pro­
gressive growth of microcracks and their coalescence 
requires constitutive laws with strain softening. In the 
context of standard continuum mechanics, softening 
leads to serious mathematical and numerical difficul­
ties. The boundary value problem becomes ill-posed, 
and the numerical solution exhibits a pathological 
sensitivity to the computational grid. The use of reg­
ularization techniques enforcing a mesh-independent 
profile of localized strain is needed. 

A wide class of localization limiters is based 
on the concept of a nonlocal continuum (Pijaudier­
Cabr.t and Bafant 1987; Bafant and Lin 1988; Tver­
gaard and Needleman 1995; Ozbolt and Bafant 1996; 
Stromberg and Ristinmaa 1996). An accurate reso­
lution of bands of highly localized strain typically 
requires very fine computational grids (Huerta and 
Pijaudier-Cabot 1994). The efficiency of the analy­
sis can be greatly increased by using adaptive tech-­
niques that adjust the mesh dm"ing the simulation, de­
pending on the intermediate localization pattern and 
its evolution. The most common approach is based on 
h-adaptivity, i.e., on the adjustement of the element 
size, keeping the order of the elements constant (and 
usually low). However, low-order elements produce 
stress oscillations due to the mismatch between the 
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interpolation of local and nonlocal quantities (Jirasek 
and Patzak 2000). As shown by Jirasek (2001), p­
adaptive methods based on an increase of the poly­
nomial order of finite element shape functions lead to 
only a partial improvement. The undesired stress os­
cillations are usually reduced around the center of the 
process zone but they remain appreciable around the 
boundary of the process zone surrounded by material 
that experiences unloading. This is caused by the poor 
ability of polynomial approximations to capture the 
non-smooth transition between the unloading region 
with almost constant strain and the softening process 
zone with fast strain increase in the direction per­
pendicular to the boundary. Consequently, there is a 
strong need for an innovative adaptive procedure that 
goes beyond the commonly used h or p-adaptivity. 

The present methodology can be considered as a 
nonstandard mesh-adaptive technique specifically tai­
lored for regularized continuum models, especially 
those based on nonlocal integral formulations. It 
draws inspiration from the recently emerged extended 
finite element method (X-FEM), which has been suc­
cessfully applied to modeling of arbitrary branched 
discrete cracks (Dolbow 1999; Belytschko and Black 
1999; Moes et al. 1999; Daux et al. 2000). The present 
contribution explores the application of this method 
to smeared crack models and continuum damage me­
chanics. The extended finite element method is used 
to adaptively enrich standard displacement approxi­
mation by special shape functions that make it pos­
sible to sccurately capture the localized strain profile 



with only a few additional degrees or freedom, even 
on very coarse meshes. 

2 FORMULATION 
The essential feature of X-FEM consist in its ability 
to incorporate a suitable enrichment into the finite el­
ement formulation. The X-FEM takes the advantage 
of the partition of unity property of finite elements 
(Melenk and Babuska 1996), which allows a global 
enrichment to be incorporated locally. The standard 
approximation is enriched in a region of interest by a 
suitable global function multiplied by a linear combi­
nation of the standard shape functions associated with 
the nodes in that region. The enriched displacement 
approximation for a single process zone assumes the 
general form 

u(x) = L;Ni(x)ui + L;Ni(x)H(x)uf (1) 
iEI iEL 

where I is the set of all element nodes, L is the subset 
of element nodes that are enriched, ui are the standard 
displacement degrees of freedom, Ni are the corre­
sponding shape functions, H is an enrichment func­
tion, and uf are the added degrees of freedom associ­
ated with the enrichment. 

Classical fracture mechanics represents the crack 
by a discontinuity in the displacement field. Nonlo­
cal damage models provide a more refined descrip­
tion of the fracture process zone. The displacement 
discontinuity is smeared over a finite width. The pro­
posed technique describes the displacement field in­
side the fracture process zone as a linear combina­
tion of standard finite element approximations and a 
regularized Heaviside function in the direction normal 
to the crack. In this paper, the regularized Heaviside 
function, depending on the coordinate r normal to the 
crack direction, is assumed to have the form 

{ 

0 ifr < -R 

15 (r 2r3 r 5 1) 
H(r) = 16 R - 3R3 + 5R5 + 2 if lrl::; R 

1 ifr>R 
(2) 

where R is the width of the process zone. The 
derivative of this function is the bell-shaped function, 
widely used for nonlocal averaging: 

115 ( 2) 2 
D(r) = dH(r) = 16R 1- ~2 if lrl :SR 

dr 
0 iflrl :'.'. R 

(3) 
The displacement field is enriched only in the direc­
tion normal to the centerline of the process zone. For a 
single process zone, there is only one additional scalar 
coefficient ux associated with the enrichment, repre­
senting the generalized displacement in the normal di­
rection. The enriched displacement approximation for 
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a single process zone in two dimensions has the form 

u = L Niui + L NiHuuf (4) 
iEl iEL 

v L;Niui+ L;NiWuf (5) 
iEI iEL 

where Hu= Hn1 , Hv = Hn2, and n = {n1,n2}T is 
the unit normal vector to the centerline of the process 
zone constructed at the closest point of the idealized 
crack (see Fig. 1). 
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Figure 1: Centerline of the process zone (idealized 
crack) and regularized Heaviside function. 

To assemble the strain-displacement matrix of the 
enriched element, the partial derivatives of Hu and 
Hv are needed. By application of the chain rule, one 
obtains 

aHu a dH ar 2 
ax = ax (H(r(x, y))n1) = dr ax n1 = D n1 

aHv a dH ar 2 
ay = ay (H(r(x, y))n2) =dray n2 = D n 2 

a Hu a aHv 
ay= ay(H(r(x,y))n1)=Dn2n1= ax 

(6) 
The introduction of the global enrichment function 

H requires to track the position of the centerline of the 
process zone (idealized crack), i.e., the set of points 
at which r = 0. The development of the methodology 
for tracking general curved cracks is the subject of on­
going research. At present, a fixed and straight crack 
trajectory is assumed, and the enrichment is allowed 
to grow only in the prescribed direction. 

A truly adaptive technique dynamically introduces 
the additional degrees of freedom during the analysis. 
In the present approach, the analysis starts with all 
elements in a "standard mode", with standard shape 
functions and with no extensions introduced. After 
reaching the equiHbrium state for a given load incre-
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Figure 2: Three-point bending test: (a) specimen ge­
ometry, (b) coarse mesh, (c) fine mesh. 

ment, the list of newly damaged elements is created. 
For each element in the list, the element nodes are 
checked and the new additional degrees of freedom 
representing the generalized displac~ment in th~ nor­
mal crack direction are introduced (1f not prev10usly 
present) and initialized to zero, while keeping the val­
ues of the previously existing degrees of freedom. Af­
ter all elements in the list have been processed, the 
residual associated with the new degrees of freedom 
is evaluated and global equilibrium is restored by ad­
ditional iterations, which provides the initial values of 
the new degrees of freedom. 

For elements with one or more extended degrees 
of freedom the evaluation of equivalent nodal forces 
and stiffne;s matrix at the element level requires high­
order integration rules, An integration scheme with a 
high number of equally distributed integra~ion poi.nts 
is used. The adaptive switching from one mtegrat1on 
rule to another requires the mapping of internal vari­
ables. In the present study, the internal variables cor­
responding to new integration points are transferred 
from the closest integration point of the old integra­
tion scheme. The order of integration must be in­
creased not only in the newly damaged elements but 
also in the neighboring elements connected to the 
nodes with extended degrees of freedom. 
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Figure 3: Three-point bending test: load-displacement 
diagrams produced by extended finite elements on a 
coarse mesh and by standard finite elements on a fine 
mesh. 

3 EXAMPLE 

To illustrate the proposed approach and its capa­
bilities, a three-point bending test has been simu­
lated using a nonlocal isotropic damage model with 
a Rankine-like equivalent strain measure (Jirasek and 
Zimmermann 1998), which takes into account only 
damage due to tension. The geometry of the speci­
men is shown in Fig. 2a. The material properties are 
as follows: Young's modulus E = 20 GPa, Poisson's 
ratio v = 0.2, equivalent strain at the onset of soft­
ening co = 0.0001, equivalent strain corresponding to 
complete damage c: 1 = 0.0008, and radius of nonlo­
cal interaction R = 30 mm. Linear softening law and 
a bell-shaped weight function have been used. 

The propagating crack geometry has been assumed 
as a growing straight segment placed on t~e axis of 
symmetry of the specimen. The mesh used m this ex­
ample is shown in Fig. 2b. It consist of 67 nodes and 
92 constant-strain elements. During the adaptive anal­
ysis only 6 additional generalized displacement de­
grees of freedom have been introduced. 

Fig. 3 compares the resulting load-displacement 
diagram with the diagram obtained using the stan­
dard finite element interpolation on a fine mesh, con­
taining 976 nodes and 1868 constant-strain elements 
(Fig. 2c). A good agreement has been achieved, sho~­
ing the capabilities of the proposed method. The mam 
advantage is the ability to accurately capture the evo­
lution of the fracture process zone even on very coarse 
meshes. This can be illustrated using the obtained pro­
files of local strain (Fig. 4) and damage (Fig. 5). 
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Figure 4: Three-point hending test: strain profile. 

Figure 5: Three-point bending test: damage profile. 

4 CONCLUSIONS 

The extended finite element method has been suc­
cessfully applied to the simulation of a propagat­
ing fracture process zone using a nonlocal material 
model. The displacement field has been adaptively ex­
tended by incorporating a special enrichment corre­
sponding to a regularized Heaviside function. This al­
lows to accurately capture the localized nature of the 
solution even on very coarse grids. Although tested 
only for the case when the crack trajectory is straight 
and known in advance, the methodology seems to 
be promising. The generalization to arbitrary curved 
crack trajectories and to three dimensions is the sub­
ject of ongoing research. 
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