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ABSTRACT: In the paper, an anisotropic elastoplastic-damage model is formulated in the context of the strong 
discontinuity approach (SDA) (Simo, Oliver, and Armero 1993) for Finite Element (FE) analysis of mode-I 
fracture in quasi brittle materials. The constitutive relations of the elastoplastic-damage material degenerate to 
traction-displacement relations at the line of discontinuity. As a consequence, no special internal length pa­
rameter needs to be introduced. The equations are integrated exactly without any numerical parameter. The 
parameter defining the amplitude of the displacement jump within the finite element is condensed out at the 
material level without employing the standard static condensation technique. This approach results in a form 
of the linearized constitutive equations formally identical to continuum models. Therefore the standard return 
mapping algorithm is used to solve the nonlinear equations. Algorithmic issues and details of the implemen­
tation are discussed with emphasis on unloading and reloading conditions. The applicability of the SDA finite 
element model as well as its numerical performance is investigated by means of a representative example. 

INTRODUCTION 

Numerical analyses of structures made of brittle ma­
terials loaded up and beyond a critical level, at which 
cracks start to open, require special considerations to 
obtain objective results with regards to mesh refine­
ment. Nonlocal models that make use of an internal 
length parameter related to the specific material are 
one possible choice. This approach, however, requires 
a sufficiently fine resolution of the crack zone to guar­
antee mesh objectivity resulting in high computer cost 
for large scale computations even if adaptive tech­
niques are used. As an alternative method, the fracture 
zone can be represented as a line of discontinuous dis­
placements within the respective finite elements. This 
method allows to use relatively large elements com­
pared to the size of the crack width. 

The idea to enhance standard finite element models 
by additional modes to capture displacement jumps 
was suggested already in the early work by (John­
son and Scott 1981). A more detailed insight into 
the effect of strong discontinuities in classical contin­
uum models was given in (Simo, Oliver, and Armero 
1993). In an effort to simulate the brittle response of 
concrete structures the concept was also used in the 
context of damage theory (Armero 1997). 

In the present paper, the strong discontinuity ap­
proach is extended to a rotating localization surface 
approach to reduce locking effects. This aspect has 
also recently been addressed by (Jirasek 2001). In 
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contrast to previous formulations of the SDA, an 
anisotropic elastoplastic damage model suggested by 
(Meschke, Laclmer, and Mang 1998) is formulated 
within the framework of the SDA. The benefit of this 
model is a more realistic representation of the un- and 
reloading behavior of cracked brittle materials. This 
SDA-based model is formulated in an identical man­
ner as classical continuum-based models. Hence, the 
usual static condensation of the parameter defining 
the displacement jump is circumvented. The analogy 
of its algorithmic formulation with formulations for 
standard plasticity models is demonstrated. 

2 KINEMATICS: DISCONTINUOUS DIS-
PLACEMENT FIELDS 

A domain f2 of a body B is considered to be separated 
into two portions o- and o+ by means of a localiza­
tion surface 85 0 (Fig. 1). This surface is defined by 
its normal n. Based on the assumption of a jump in 
the displacement field across this surface, an additive 
decomposition of the displacement field 

u(x) = u(x) + 'Vx E 0, (1) 

with 
= [u] Ms(x). (2) 
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Figure l: Body B separated by a localization surface 
osD into two parts o- and o+ 

into a regular part u( x) and a jump term u( x) is mo­
tivated (Simo, Oliver, and Armero 1993) (Fig. 2). 

Figure 2: Additive decomposition of the displacement 
field into a regular part u and a part u which contains 
a jump 

The function Ms ( x) can also be decomposed into 
a HEAVISIDE function Hs(x) and a smooth function 
cp(x) (Simo, Oliver, and Armero 1993) 

J\!Is(x) = Hs(x) - cp(x), Vx E D. (3) 

The function cp( x) allows to prescribe the boundary 
conditions in terms of u. At the localization surface 

[1\!Is(x)] = 1, (4) 

has to be fulfilled. From computing the gradient of 
Eq. (1), using Eqs. (2) and (3), the linearized strain 
tensor is obtained as 

e:(u) = vsymu = vsymu - ([u] ® Vcp)sym 
~ 

€ 
+ ([u] ® n)'Ym Os. 
~ 

e:, 

(5) 

The modified strain tensor (5) contains, in addition to 
the gradient of the smooth part of the displacement 
field, two additional parts, € E D and e:, E osD. To 
simplify the following derivations, the decomposition 
of the discontinuous displacement field 

[u] = ( m (6) 

into a vector m, defining the direction of the jump, 
and the amplitude of the jump ( is introduced. The 
vectors n and m, are computed from a bifurcation 
analysis, characterized by the localization condition 

Qperf. m = 0, (7) 

with the acoustic tensor Qperf defined as 

Qperf = n . q'.''f . n. (8) 

In contrast to classical bifurcation condition Qperf is 
based on the perfect plastic tangent (Simo, Oliver, and 
Armero 1993). 

3 MATERIAL MODELS CONSIDERING JUMPS 
IN THE DISPLACEMENT FIELD 

In this section, the incorporation of two different 
classes of material models within the framework of 
the Strong Discontinuity Approach is addressed. In 
Subsection 3 .1, the formulation of classical plastic­
ity models is discussed to give a concise summary 
of the standard approach. Subsection 3.2 contains the 
respective SDA-formulation for an anisotropic com­
bined plasticity-damage model. Comparing both sub­
sections reveals the analogy between both formula­
tions. 

3.1 Plasticity theory 
In this subsection, the concept of strong discontinu­
ities is incorporated within the governing equations 
of classical nonassociated plasticity theory. The flow­
rule and the plastic multiplier are re-formulated in 
a general context within the framework of the SDA. 
Then, the principal stress model is taken as a particu­
lar example. 

Without referring to any particular model of plas­
ticity for now, the space of admissible stresses 

Eu:= {(a,q) E § x R l,P(a,q)::; O} (9) 

is defined by means of a yield (failure) function 
,P ( o-, q), which depends on the stress tensor and 
a stress-like hardening/softening parameter q. The 
model is completed with the definition of the stress 
rate and the evolution of the plastic strains 

& = IC : ( e: - gP) ' 

·p - \ og(a,q) 
e: - /\ 00" ' ,\ ~ 0, ,\ <P = 0, (10) 

. - \ og(u,q) 
a - /\ aq , 

where g(CY,q) is a potential function. From the reg­
ular distribution of the stress tensor follows, that the 
plastic multiplier,\ 

(11) 
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must exhibit a singular part (Simo, Oliver, and 
Armero 1993). Assuming),= 0, additional plastic de­
formations are restricted to the surface of discontinu­
ity EJs[I, while in the remaining part of the considered 
domain 

€P = 0, 'I/ x E ri-,rJ+. (12) 

From Eq. (12) and from the traction continuity re­
quirement follows, that the plastic strains e:P are re­
lated to the assumed singular strains 

([u]®n)'ym=>-sag(a,q). (13) 
au 

Using the consistency condition ¢ = 0, the singular 
plastic multiplier >.0 can be computed by means of 
the amplitude of the displacement jump ( as 

, .au¢: C: (m@n)sym 
/\J = ( (14) 

aa¢: C: aag 

In what follows, the simple case of positively homo­
geneous yield functions of degree one, e.g. 

¢(a,()=(m®n):a-q((), (15) 

together with an associative flow model will be used. 
For the special case m = n, the RANKINE failure cri­
terion, suitable for the representation of mode-I fail­
ure in brittle materials, is recovered. In this case, n 
coincides with the direction of the maximal principal 
the stress. The stress component ( n ® n) : a :::; CJ max 

normal to the fracture surface is controlled by the 
failure criterion. In the numerical analysis contained 
in Section 5, this type of failure criterion will be 
employed within the framework of the elastoplastic­
damage model described in the next subsection. 

3.2 Elastoplastic damage model 
In this subsection, a phenomenological anisotropic 
elastoplastic damage model proposed by (Meschke, 
Lackner, and Mang 1998) is re-formulated within the 
concept of strong discontinuities. Here, only mode-I 
fracture of brittle solids is taken into consideration. 
A similar formulation of continuum damage has been 
employed by (Armero 1997), using a fixed crack ap­
proach in conjunction with the SDA. Here, a different 
approach is taken for the incorporation of the com­
bined plasticity-damage model within the context of 
the SDA. The difference is particularly manifested in 
the modeling of un- and reloading cycles. The pro­
posed formulation allows for a consistent description 
of un- and reloading branches also for rotating crack 
formulations in full analogy to elastoplastic models. 

The constitutive model is based on the following 
form of the free energy 

1 = -(e:- e:P): ([;: (e:-e:P) 
2 

+S(a), 
(16) 
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where a is an internal variable. 
The rate of the enhanced strains in ri+ and ri- is 

given as 

e=([u]@n)sym = (m@n)'Ym ( 
G ( 

(17) 

For the tensor of enhanced strains, the following split 

c cd cp 
e: = ~ +e:. (18) 

][]l : u 

is assumed. In Eq. (18), ect represents rates of en­
hanced strains related to the stiffness degradation and 
eP are rates related to inelastic strains. The rates of 
both enhanced Strains ed and sP are associated With 
the opening of cracks characterized by the crack nor­
mal n. In case of mode-I failure in brittle materials, 
permanent deformations result from imperfect crack 
closure due to the roughness of the crack faces. Intro­
ducing a scalar parameter /3, a simple decomposition 
of the pseudo plastic and the damage strains yields 

·d . . 
€ = lDl : a= /3 G (, 

eP = (1 - /3) G (, 
'11(3 E [O, l]. (19) 

It should be noted, that this type of a linear decompo­
sition of the enhanced strains into portions related to 
the degradation of the stiffness tensor and to inelas­
tic deformations, respectively, is only a crude approx­
imation of the more complex coupling mechanisms 
associated with the opening and closure of cracks. 

The evolution of the compliance tensor remains to 

be defined. Double contraction of ect with the stress 
tensor CY and multiplication by (Ba¢ : O') I (au¢ : O') 
yields after some algebraic transformations 

a:IDi:u =/3(u:G 
. a(J'¢: (}' 

=/3(a:G-8 ,.i,. 
(J''f/ . (J' 

= /3 ( u: G ® 8a¢ : a. 
au¢: u 

(20) 

From Eq. (20), the evolution law for the 4th-order 
compliance tensor follows: 

[Ji= /3 ( G ®au¢. 
8u¢: er 

(21) 

The softening behavior after the onset of cracking is 
defined via the relation between the internal variable 
a and the stress-like internal variable q. According 
to (Meschke, Lackner, and Mang 1998) a hyperbolic 
function 

(22) 

1s a suitable choice. au is a parameter which is cali­
brated according to the fracture energy. 



4 ALGORITHMIC FORMULATION AND FI-
NITE ELEMENT IMPLEMENTATION 

This section contains details of the finite element 
formulation of the anisotropic elastoplastic damage 
model described in Subsection 3.2. Starting with the 
design of the enhanced strain field, the integration of 
the evolution equations and the linearization of the al­
gorithm are described. 

4.1 Design of the jump functions 
The design of the enhanced strains is only described 
briefly in this subsection. Further details can be found 
in (Simo, Oliver, and Armero 1993) and (Mosler and 
Meschke 2000). 

The enhanced strain field in o+, or o- depend on 
the gradient of the function cp( x). One possible choice 
for the definition of Vcp(x) is 

Vcp(x) = ~ a~~e), 
i=l 

(23) 

with the standard shape functions Ni(~). In some 
cases (e.g. if a crack separates one nodal point from 
three other points within a 4-node element), V cp( x) is 
not constant within a finite element. Hence, for each 
GAUSS point, the average value 

vzp = ~ f Vcp(x) dD. (24) 

!J 

is taken. Using Eq. (24), the rate of the enhanced 
strain field can be transformed into 

~ = (vzp ® m)'Ym (. 
~ 

G 

4.2 The return mapping algorithm 

(25) 

At the end of a time interval [tn, tn+il, the updated 
state of stress and of the softening parameter q, re­
spectively, is 

D"n+l = Cn+l: (v8un+l - En+1), 
qn+l = qn+l (an+1), 

(26) 

where Eq. (26)a is defined for x E o+, o-. With the 
definition of a trial state 

tr ,,-, (.,-,S - - ) 
U n+l == \L.-n : v Un+l ~ Cn ' (27) 

Eq. (26) can be reformulated as 

17n+l = 17~+1 - Cn: Gn+i l:.(n+l· (28) 

Inserting the trial state into the failure criterion, the 
trial loading condition is given as 

¢~+ 1 (a~+Jlq~+ 1 ) > 0 with: q~+l = q(an)· (29) 
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Application of a backward EULER integration to the 
evolution equations ( 17), ( 10) together with the fail­
ure criterion at tn+ 1 leads to 

En+l =En+ Gn+l l:.(n+l 1 

O!n+i = O!n +Lan+!= O!n + jl:.(n+il, (30) 
¢n+l = ( mn+l ® nn+1) : a n+l - qn+l = 0. 

During the return map iteration, linearization of 
Eq. (26) yields (Simo and Hughes 1998), 

= - Cn : dEn+1 1 

= - Dn+l dan+l· 
(31) 

In the k-th iteration, linearization of the residuals of 
Eq. (30), defined as 

Re = -En+l +En+ Gn+l L(n+l 
Ra= -O!n+l + O!n + jL(n+il 

yields the algebraic system of equations 

Re +dRe = 0, 
Ra+dRa = 0, 
¢n+l + d¢n+l = 0. 

Inserting Eq. (33) into (32) leads to 

[ dRe] 
dRa 

'---v---' 
dR 

= [ 8~~1 0_1 ] [ dan+1] 
0 D dqn+1 
~~ 

A-1 D. 

+dL(n+l [ sign ~~Cn+i] ] · 

vM 
In Eq. (34), S denotes the algorithmic moduli 

From the consistency condition 

(32) 

(33) 

(34) 

(35) 

(36) 

the change of the amplitude of the displacement jump 
during an iteration cycle is obtained as 

For a globally convergent behavior at an asymptotic 
quadratic rate, the algorithmic tangent moduli need to 



be computed from the consistent linearization of the 
algorithm at tn+1, where the residual R = 0. The al­
gorithmic elastoplastic-darhage tensor is obtained as 

do-

d\73 u 
_ ';:;' {A VM ® V<f;T A}[nJ 
-~- V<f;T A VM 

(38) 

where the abbreviation {'" }[ijJ for the submatrix ij 
has been used. It should be noted, that the format 
of Eq. (38) is generally applicable to a broad range 
of elastoplastic as well as damage models and is not 
restricted to the elastoplastic damage model investi­
gated in Subsection 3.2. Although formally identical 
to the algorithmic tangent operator obtained for the 
continuum case (Meschke, Lackner, and Mang 1998), 
a comparison between the tangent moduli (38) and the 
respective formulation for the continuum case reveals 
that, although an associated flow is used, lineariza~ 
ti on results in a non symmetric 4th-order tensor cep. 
Only for special cases (i.e. V f = V M), a symmetric 
tangent operator is recovered. It should be noted, that 
the proposed model affects only the material routines 
and not, as in most of the previous implementations 
of SDA-based models, the finite element level. There­
fore, any computer code for nonassociated plasticity 
models can directly be used as the framework for the 
implementation of the present SDA-based elastoplas­
tic damage model. 

Based on the updated values of a-, m and n, the 
increment of the compliance tensor Llill is computed 
as 

Llill = /3 L(n+1 ~n+1 ® (mn+1 ~ nn+i)' (39) 
mn+l ® nn+l : O"n+l 

where the discrete counterpart of Eq. (21) was used. 

5 NUMERICAL EXAMPLE 
The applicability of the proposed finite element for­
mulation for prognoses of mode-I fracture of brittle 
materials, taking stiffness degradation as well as in­
elastic deformations into account, is investigated by 
means of numerical analyses of an academic bench­
mark problem, an L-shaped slab (Winkler and Hof­
stetter 2000). The geometry and material parameters 
of the problem are illustrated in Fig. 3. The analy­
sis is based on the anisotropic elastoplastic damage 
model described in Subsection 3.2. Since mesh inde­
pendence is not the key point of this paper - this issue 
has been addressed, e.g. in (Oliver 1996; Mosler and 
Meschke 2000) - only one discretization of the slab 
is used in the analyses. The displacement controlled 
analysis is performed by means of 642 bilinear 4 node 
plane stress elements. Loading was applied by pre­
scribing vertical displacements at all nodes along the 
right edge of the slab. 
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Figure 3: Geometry and material parameters used for 
analysis of the L-shaped slab 

Fig. 4 shows the load displacement diagram ob­
tained from the analysis. In the post-peak regime, four 
unloading and reloading cycles have been included. 
This diagram illustrates the capability of the model 
to capture fracture-induced stiffness degradation as 
well as permanent deformations after crack initiation. 
It should be noted, that for previously suggested im­
plementations of damage models similar to the one 
used in this paper, when formulated as a rotating 
crack model, problems may arise in un- and reload­
ing branches. These problems, which are connected 
with the mode of defining the unloading stiffness, are 
completely circumvented in the proposed model. 

6 

~4 
~ 
0 
lL 

2 

0.0005 0.001 
Displacement u 

Figure 4: L-shaped slab: Load displacement diagram 

Damage accumulation, characterized by the inter­
nal .variable a is illustrated in Fig. 5. A localized, 
slightly curved crack band is observed. It refers to the 
final state of the loading process. 



Figure 5: L-shaped slab: History variable a at the final 
state of deformation 

6 SUMMARY AND CONCLUSIONS 
The strong discontinuity approach (SDA) has been 
used in conjunction with an anisotropic elastoplastic­
damage model for finite element analysis of mode­
l fracture in quasi-brittle materials. In accordance 
with the corresponding continuum formulation of the 
model, a rotating crack approach has been used. In 
contrast to previous SDA-based formulations, it was 
shown that the amplitude of the displacement jump 
can be already condensed out at the material level. 
This leads to a considerable simplification of the im­
plementation of this class of models within the al­
gorithmic framework of standard plasticity models, 
since the necessary modifications of the FE-code are 
restricted to the Gauss-point level. The incorporation 
of the elastoplastic-damage model within the frame­
work of the SDA is accomplished in full analogy to 
classical plasticity models. In contrast to previous for­
mulations, it allows a consistent description of un­
and reloading branches, taking anisotropic stiffness 
degradation as well as permanent deformations into 
account. 
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