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ABSTRACT: A sequentially linear continuum model for concrete fracture is proposed. The model approxi­
mates the tensile softening stress-strain curve as a saw-tooth diagram. After a linear analysis, the critical ele­
ment, i.e. the element for which the stress is most close to the current peak in the saw-tooth diagram, is traced. 
Next, the stiffness of that element is reduced and the process is repeated. The sequence of critical states gov­
erns the global force-displacement diagram. The elements with reduced stiffness reveal the cracked areas. In 
fact, the elements are removed in a stepwise manner. The definition of the envelope of the saw-tooth curve 
uses the notions of fracture energy, tensile strength and crack band width. A notched beam is analysed. Mesh­
objectivity can be achieved by adapting both the strength peaks of the saw-tooth diagram as well as the ulti­
mate strain of the diagram to the element dimensions. The potential of the model for large-scale fracture 
analysis is demonstrated. The very sharp snap-backs associated with brittle fracture of an unreinforced ma­
sonry facade automatically come out with sequentially linear analysis, whereas nonlinear analysis of the fa­
cade using smeared or discrete crack models show substantial difficulties despite the use of arc-length 
schemes. 

l INSPIRATION FOR THIS STUDY 

1.1 Settlement damage in large-scale masonry 
facade 

The fracture model proposed in this paper was in­
spired by practice-oriented research on settlement 
damage for masonry structures. Underneath the his­
torical center of Amsterdam a bored tunnel is being 
planned. The boring of tunnels in soft soil leads to 
settlements of the soil above the tunnel. These set­
tlements may cause cracking in the existing build­
ings that are located in the settlement trough area. 
Fracture mechanics studies are helpful to perform 
risk analyses and to design mitigating measures. 
Figs. 1-3 summarize results by Rots (2000). The fa­
cade represents three house units with a length of 
20.4 m and height 15.5 m. Please note that these di­
mensions are no less than 150 to 200 times larger 
than the dimensions of popular notched laboratory 
beams that usually have a height of approximately 
100 mm. First, the facade is subjected to dead load 
which leads to vertical pre-compression in the ma­
sonry. Subsequently, a settlement trough in the form 
of a Gauss curve is imposed which is incremented 
until and beyond fracture. The settlement trough 
leads to bending and shear and superposes tensile 
stresses to the existing pre-compression, which may 
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lead to cracking. The aim is to predict (post-peak) 
crack widths as this is the main damage process that 
governs the risk. Fig. 1 shows the results for a dis­
placement controlled smeared crack analysis and for 
an arc-length controlled discrete crack analysis, in 
terms of the angular distortion, which is related to 
the magnitude of the settlement trough, versus the 
maximum crack width in the facade. Fig. 3 shows 
the deformed mesh for the smeared crack analysis. 
For the discrete crack analysis, interface elements 
were predefined at the vertical line where localiza­
tion was found in the smeared crack analysis. For de­
tails of all parameters etc., the reader is referred to 
Rots (2000). Here, we only display the results, be­
cause it is a good illustration of the fact that the be­
havior is extremely brittle. The large scale in 
combination with the relatively low fracture energy 
of masonry leads to a very sharp snap-back in the 
angular distortion versus crack width diagram of Fig. 
1. Only with discrete cracking, this snap-back could 
be followed partially, by switching between various 
indirect control parameters (de Borst 1987) over the 
most active separation node-set of the interface ele­
ments. However, the crack has to snap four times, 
from window to window in the vertical direction, 
ending up at the top. This saw-tooth four-step nested 
path could not be traced completely, and sometimes 
'luckily' a rigorous jump to another tooth was found, 
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Figure l. Angular distortion vs. maximum crack width in ma­
sonry fa'ade subjected to settlement trough. Smeared (dashed) 
and discrete crack (drawn) anaysis. 
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Figure 2. Zoom-in of snap-back path in Fig. l. 

Figure 3. Deformed mesh of masonry fa,ade subjected to set­
tlement trough, smeared crack analysis. 
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see the zoomed-in graph in Fig. 2. Alano & Crisfield 
(2001) report similar irregular behavior for different 
applications. After the difficult regime, the discrete 
crack analysis produced a rising curve again, corre­
sponding to a fully broken facade. 

This second branch makes it possible to find the 
post-peak crack width, which suddenly jumps from 
approximately 0.5 mm at peak to 18 mm after frac­
ture completion. The discrete crack path was con­
verged. With the smeared crack analysis, no conver­
gence could be found near and beyond peak. Use of 
a tangent stiffness scheme could not be maintained, 
while arc-length methods failed, independent 
whether a decomposed strain based crack model 
(e.g. Rots 1993), a total strain based crack model 
(Feenstra et al. 1998) or a Rankine plasticity based 
crack model (Feenstra & De Borst 1995) was 
adopted. Fig. 1 shows a rough displacement con­
trolled 'push-through' analysis whereby the secon­
dary branch shows unconverged states. The very 
brittle response is jumped over and significant 
stress-locking was observed. The irregular snap­
regime of Fig. 2 gave rise to the idea of sequentially 
linear analysis where the local peaks emerge auto­
matically rather than delicately trying to pass them 
using arc-length procedures in nonlinear analysis. 

1.2 Lattice models 

Secondly, inspiration came from lattice models, e.g. 
Schlangen & Van Mier (1992) and Beranek & Hob­
belman (1995). In these publications, much empha­
sis is placed on the imitation of the continuum by a 
lattice. However, it is stated here that the charm of 
lattice models is probably not so much the replace­
ment of the continuum by a lattice, but rather the fact 
that lattice models adopt sequentially linear tech­
niques, so that notions like iteration, spurious behav­
ior and divergence do not appear in the vocabulary. 
After a linear analysis, the most critical beam ele­
ment of a lattice is traced and subsequently removed, 
after which the next linear analysis is carried out and 
the process is repeated. Problems under study are the 
proper definition of the lattice structure and the se­
lection of stiffness and strength properties for the lat­
tice elements, which asks for further input from mi­
cro-mechanics observations. Furthermore, 
systematic studies of mesh objectivity (or possibly 
in-objectivity because of the elastic-brittle 
characteristics) do not seem to have received much 
attention for lattice models. In the author's opinion, 
a scientific debate might be started whether it is 
really necessary to mimic the continuum by a lattice. 
The question is whether the charm of sequentially 
linear analysis can also be gained directly for the 
continuum, so that the notions of elasticity, strength 
and fracture energy can be preserved at 'macro­
level '. Together with the motivation in section 1.1, 
this marked the starting point for the present study. 



2 SEQUENTIALLY LINEAR PROCEDURE 
WITH SAW-TOOTH SOFfENING 

2.1 Global procedure 

The structure is discretized using standard elastic 
continuum elements. Young's modulus, Poisson's 
ratio and a tensile strength are assigned to the ele­
ments. Subsequently, the following steps are se­
quentially carried out: 
<> Add the external load as a unit load. 
<> Perform a linear elastic analysis. 
" Extract the critical element from the results. The 

critical element is the element for which the 
principal tensile stress is most close to its current 
strength. This principal tensile stress criterion is 
widely accepted in mode-I fracture mechanics of 
quasi-brittle materials. 

"' Calculate the critical global load as the unit load 
times the current strength divided by stress of the 
critical element. 

" Extract also a corresponding global displacement 
measure, so that later an overall load­
displacement curve can be constructed. 

" Reduce the stiffness and strength, i.e. Young's 
modulus E and tensile strength f, of the critical 
element, according to a saw-tooth tensile soften­
ing stress strain curve as described in the next 
section. 

" Repeat the previous steps for the new configura­
tion, i.e. re-run a linear analysis for the structure 
in which E andf, of the previous critical element 
are reduced. 

"' ................ Repeat again, etc ........... . 
., Construct the overall load-displacement curve by 

connecting all load-displacement sets consecu­
tively found in the above steps. 

<> Plot deformed meshes. These plots reveal the 
fracture localization because the series of critical 
weakened elements will display the largest 
strains, representing crack width. 

2.2 Saw-tooth softening model via stepwise 
reduction of Young's modulus 

The outcome of the above scheme heavily depends 
on the way in which the stiffness and strength of the 
critical elements are progressively reduced. This 
constitutes the essence of the model. A very rough 
method would be to reduce E to zero immediately 
after the first, initial strength is reached. This elastic 
perfectly brittle approach, however, is likely to be 
mesh dependent as it will not yield the correct en­
ergy consumption upon mesh refinement (Bazant 
and Cedolin 1979). In this study, the consecutive 
strength and stiffness reduction is based upon the 
concept of tensile strain softening, which is fairly 
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accepted in the field of fracture mechanics of con­
crete (Bazant and Oh, 1983). 

The tensile softening stress-strain curve is defined 
by Young's modulus E, the tensile strength f,, the 
shape of the diagram, e.g. a linear or exponential 
diagram, and the area under the diagram. The area 
under the diagram represents the fracture energy Gt 
divided by the crack band width h, which is a discre­
tisation parameter associated with the size, orienta­
tion and integration scheme of the finite element. Al­
though there is some size-dependence, the fracture 
energy can be considered to be a material property. 
This softening model usually governs nonlinear con­
stitutive behaviour in an incremental-iterative strat­
egy. Please note that here we adopt the curve only as 
a 'mother' or envelope curve that determines the con­
secutive strength reduction in sequentially linear 
analysis. This differs also from a previous study in 
which element removal was combined with nonlin­
ear analysis (Rots 1992). In the present study, atten­
tion is confined to a linear softening diagram, but ex­
tension to any other shape of the diagram is possible. 
For a linear softening diagram, the ultimate strain Eu 

of the diagram reads: 

Eu = ( 2 Gt ) I (f, h) (1) 

In a sequentially linear strategy, the softening dia­
gram can be imitated by consecutively reducing 
Young's modulus as well as the strength. Young's 
modulus can e.g. be reduced according to: 

for i= l ton (2) 

with i denoting the current stage in the saw-tooth 
diagram, i-1 denoting the previous stage in the saw­
tooth diagram and a being a constant. When a is 
taken as 2, Young's modulus of a critical element is 
reduced by a factor 2 compared to the previous state. 
n denotes the amount of reductions that is applied in 
total for an element. When an element has been 
critical n times, it is removed completely in the next 
step. This complete removal can be done explicitly 
so that 'a hole in the mesh' occurs for full cracks, or 
it can be approximated by maintaining the element 
but giving it a very low residual Young's modulus 
for reasons of computational convenience (e.g. 10-6 

times the initial Young's modulus). The reduced 
strength f,; corresponding to the reduced Young's 
modulus Ei is taken in accordance with the envelope 
softening stress-strain curve: 

j,; = Eu E; ( D I ( E; + D ) ) (3) 

with 

(4) 

and 



D = f, I ( Eu - ( f, I E ) ) (5) 

being the tangent to ihe tensile stress-strain softening 
curve. Note that this is the softening curve in terms 
of stress versus total strain, i.e. the sum of elastic 
strain and crack strain of an imagined cracked con­
tinuum. The diagram includes the initial rising 
branch, which is steep compared to the downward 
slope in case of small-scale elements (small crack 
band width) and/or high fracture energy. As an ex­
ample, Fig. 4 shows the envelope softening curve 
and the corresponding saw-tooth curve for an initial 
Young's modulus E of 38000 N/mm2, initial tensile 
strength f, of 3 N/mm2 , fracture energy Gr of 0.06 
N/mm, crack band width h of 5 mm, factor a equal 
to 2 and number of reductions n equal to 10. 
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The model has been elaborated here for contin­
uum crack methods, using softening stress-strain 
curves. Sequentially linear saw-tooth approaches can 
also be employed for discrete crack methods with 
stress-relative displacement curves in interface ele­
ments or embedded representations. 

Unloading of softening zones is possible and 
inherently of the secant type, because of the 
reduction of elasticity. 

2.3 Alternative definition of saw-tooth diagram 

In the previous section, the starting point for defin­
ing the saw-tooth diagram was a consecutive reduc­
tion of Young's modulus via the factor a while the 
corresponding reduced strength was subsequently 
determined from the envelope curve according to 
(3). In first trials of the model, the starting point was 
taken alternatively by reducing the strength fromf, to 
zero in n steps, while the corresponding reduced 
Young's modulus was subsequently computed from 
the envelope curve. The decreasing line of the enve­
lope curve is in fact split into n equidistant portions. 
When n is assumed to be 10 and when the element is 
critical for the first time, the strength is reduced to 
90% of the original strength. When it is critical for 
the second time, the strength is reduced to 80% of 
the original strength, etc. The resulting saw-tooth 
diagram for this alternative approach is depicted in 
Fig. 5, using the same parameters as subject to Fig. 
4. Other alternative ways of stepwise reduction 
might be used as well. 

0 0.002 0.004 

Total strain 

0.006 0.008 

Figure 4. Envelope softening stress-strain diagram (dashed) and 
saw-tooth approximation (drawn). 

Strictly speaking, the sequentially linear approach 
corresponds to a set of unconnected lines of different 
slope, starting from the origin up to the current 
strength. For reasons of presentation, the lines have 
been connected into one discontinuous curve, by let­
ting the stress drop vertically from the peaks to a re­
sidual level at which the new rising branch of re­
duced slope passes. 

The model is simple. It always provides a solu­
tion, as ill-conditioning or divergence does not ap­
pear in sequentially linear analysis. A physical ex­
planation to the model is that fracture is a gradual 
separation process whereby the net cross section that 
connects material, and thus the stiffness, is gradually 
reduced. An advantage of the model is that the regu­
lar notions of fracture mechanics, like the principal 
tensile stress criterion, the envelope strength and 
fracture energy are maintained which helps in reach­
ing realistic energy consumption and toughness as 
observed in experiments. 
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Figure 5. Envelope softening stress-strain diagram (dashed) and 
alternative saw-tooth approximation (drawn). 
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3 ANALYSIS OF NOTCHED BEAM 

3.1 Geometry and meshes 

A symmetric notched beam of total length 500 mm, 
span 450 mm, height lOOmm, thickness 50 mm and 
notch depth 10 mm was selected for analysis. The 
distance between the loading points in the symmetric 
four-point loading scheme is 150 mm. In an earlier 
study (Rots 1993) this beam served the purpose of il­
lustrating stress-locking for smeared crack models 
and prevention thereof via isotropic damage formu­
lations. In the present study, on purpose a regular 
straight mesh was adopted, so that the solution is not 
affected by any disturbing effect due to zig-zag crack 
band paths. Four different meshes were used, re­
ferred to as coarse, medium, fine and very fine re­
spectively. These meshes have a symmetric center 
crack band of 20 mm, 10 mm, 5 mm and 2.5 mm 
width respectively. The element height for the cen­
tral elements was taken the same as the element 
width, so that the amount of center elements over the 
depth of the beam amounts to 5, 10, 20 and 40 re­
spectively. The ultimate strain fu of the envelope in­
put curve was adapted to h according to Eq. (1). 
Four-node linear elements were used. These were in­
tegrated using a two by two Gaussian scheme, ex­
cept for the elements in the center band which were 
integrated using a single center-point integration. 
This means that, if an integration point of an element 
in this center band reaches a local peak in the saw­
tooth curve, Young's modulus of the entire element 
can be reduced. The meshes are depicted in Fig. 6. 

ttttl I tlfl!I 11111 • 

-
·-· 

Figure 6. Coarse, medium, fine and very fine mesh for mode-I 
fracture analysis of notched beam. 
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The material parameters are the same as mentioned 
in section 2 for defining Figs. 4 and 5. Poisson's ra­
tio was taken as 0.2. The model of Fig. 4 was 
adopted. The factor a in Eq. (2) was taken as 2. The 
factor n was taken as 10, i.e. the stiffness of an ele­
ment can be reduced 10 times according to Eq. (2), 
assuming the element becomes 10 times critical in a 
global sense. Beyond that, the element is removed. 

3.2 Results 

Figs. 7 to 10 show the results for the four meshes in 
terms of the total load (sum of the two loads) versus 
displacement at the loading points. The curves are 
constructed by connecting the critical loads and the 
corresponding displacements for all linear analyses 
that have been executed sequentially. As a compari­
son, the reference curve (see also Rots 1993) from a 
nonlinear softening analysis with the same parame­
ters is included in the graphs. 

Displacement [mm] 

Figure 7. Load-displacement curve, coarse mesh. 
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Figure 8. Load-displacement curve, medium mesh. 
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Figure 9. Load-displacement curve, fine mesh. 
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Figure 10. Load-displacement curve, very fine mesh. 

This reference curve appeared to be almost identical 
for all meshes, except for the coarse mesh where a 
minor deviation near peak occurred. 

For all meshes, the load-displacement curve from 
sequentially linear analysis is irregular. This is be­
cause the process of elements becoming critical is 
discontinuous. If two elements have almost the same 
ratio of stress versus current strength, still the most 
critical one is selected first, but in the next step the 
other one will fail very soon, maybe at a lower load 
and lower displacement than in the previous step. 
This behavior is known also from sequentially linear 
analysis on lattices. In the present study, the irregular 
saw-tooth response at global level can be interpreted 
as the global pendant of the saw-tooth input at local 
level. 

With increasing mesh fineness, the curves be­
come smoother. Surprisingly, the envelope of the 
curve for the coarse mesh appears to resemble the 

reference curve most closely, both in terms of the 
maximum load and post-peak toughness. Please note 
that the model is especially derived with a view to­
wards large-scale brittle fracture analysis, i.e. large 
element sizes, which is thus promising. With in­
creasing mesh fineness, however, the peak in the 
load-displacement behavior becomes lower and 
lower compared to the correct peak from the nonlin­
ear reference analysis that is to be mimicked. This 
demonstrates that sequentially linear models are in 
principle not objective with respect to mesh refine­
ment. This is because increasing mesh fineness leads 
to sharper stress peaks at the crack band tip, so that 
the strength at the crack band tip is reached earlier 
than for a coarse mesh. In fact, a kind of 'zip­
fastener' effect is introduced. With a sudden full re­
moval of elements, i.e. a diagram with only one saw­
tooth instead of the present ten saw-teeth, this effect 
would be even more pronounced. That was de­
scribed already by Bazant & Cedolin (1979). 

3.3 Lifting the strength of the saw-tooth diagram 

A natural way to circumvent mesh-inobjective re­
sults is to enhance the strength with decreasing ele­
ment size. This counteracts the zip-fastener effect. 
Precisely speaking, the input envelope curve and 
saw-tooth curve should be adapted to the mesh in 
two ways. First, the ultimate strain Eu of the diagram 
is adapted to the element width, which is equal to the 
crack band width in the present case of a perfectly 
vertical crack in a perfectly vertically aligned mesh 
with constant strain in the direction normal to the 
crack. This is the same procedure as used for crack 
band modeling in nonlinear analysis. Now, we add 
the second adaptation, viz. the ultimate strength f, is 
adapted to the element height, which is again equal 
to the crack band width h in the present case of a 
perfectly vertical crack in a mesh composed of per­
fectly vertical square elements. The adjustment of 
the ultimate strain to the element width, measured in 
the direction normal to the crack, is a correct way to 
handle the spreading of a smeared crack. This was 
checked by running an analysis on a new mesh that 
was refined only in the vertical direction, but not in 
the horizontal direction. This yielded identical re­
sults. 
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At present there is no procedure to quantify the 
amount of strength enhancement needed upon mesh 
refinement in the crack propagation direction. For 
the present example a fitting strategy was followed, 
to gain some insight. For the various meshes, the 
strength level was raised by trial and error by a factor 
b, until the maximum load and the post-peak behav­
ior of the nonlinear reference analysis was repro­
duced most accurately. It is mentioned that upon 
strength enhancement of the peak of the input enve­
lope curve, also the fracture energy of the input en­
velope curve has been enhanced with the same 



amount, in order to keep the ultimate strain of the 
envelope curve the same. For the present case (and 
only the present case) this led to the following opti­
mal fits: 
"' Coarse mesh: no strength raise required, b=l.00 . 
., Medium mesh: required strength raise b=l.10. 
" Fine mesh: required strength raise b=l.20. 
" Very fine mesh: required strength raise b=l.42. 
As an example, Fig. 11 depicts the result for the fine 
mesh when the strength is raised by a factor 1.20, to­
gether with the previous result from Fig. 9 without 
strength enhancement. 
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Figure 11. Load-displacement curve, fine mesh, strength and 
energy enhancement by a factor 1.2 (drawn line), compared 
with results of Fig. 9 (dashed lines). 

The challenge is to derive consistent relationships 
between the various length scales in a fracture prob­
lem on the one hand, e.g. the depth of the structure, 
the thickness of the structure, the initial notch depth, 
the fracture process zone length, the so-called brit­
tleness number, and the required strength enhance­
ment on the other hand. Also the material parame­
ters and the factors a and n play a role in this respect. 
Here, further numerical and theoretical studies are 
required. The present study only serves the purpose 
of demonstrating the potential of sequential linear 
analysis for large-scale structures and/or coarse 
meshes, but it is frankly admitted that much further 
research is necessary to get mesh-objective results 
via a proper rationale. For sequentially linear lattice 
models, however, a similar statement may be raised, 
while this has not prevented these models from 
having become increasingly popular. 

3.4 Alternative saw-tooth model 

Fig. 12 shows a result for the alternative saw-tooth 
model of Fig. 5, for the coarse mesh, without 
strength enhancement. 

0.02 0.04 0.06 0.08 
Displacement [mm] 

Figure 12. Load-displacement curve, coarse mesh, alternative 
saw-tooth diagram of Fig. 5 (drawn) compared with previous 
result ofFig .. 9 (dashed). 

This result shows that the initial pre-peak stiffness of 
the structure is too low. The fact that the envelope 
softening diagram is subdivided in, in this case 10, 
equidistant portions, implies that the first reduction 
of Young's modulus is much larger than the factor 
a=2 as assumed in the previous analyses with the 
diagram of Fig. 4. This explains the flexible pre­
peak response. The procedure underlying the saw­
tooth diagram of Fig. 4 is to be preferred, although is 
must be mentioned that this aspect will be related to 
the absolute dimensions of the crack band width. 
The present beam is of small-scale laboratory size, 
giving a low value of h and thus a high ultimate 
strain compared to the initial elastic strain limit. For 
large-scale structures of the same material and of the 
same relative mesh fineness, h becomes much larger 
and the difference between the input diagrams of 
Figs. 4 and 5 will be less pronounced. 

4 MASONRYFA<;ADE 

The masonry fac;:ade introduced in section l was 
analyzed using the sequentially linear model of Fig. 
4. The parameters were taken as: £=3000 N/mm2, 
ft=0.6 N/mm2, Gi=0.05 N/mm, crack band width 
h=225 mm (note: approximately 100 times larger 
than for the small-scale notched beam), factor a=2, 
factor n=5. The thickness is 220 mm. For geometry 
the reader is referred to Rots (2000). A difficulty 
with this problem is that it involves a non­
proportional loading scheme. First, dead weight is 
added and subsequently the settlement trough. It ap­
pears that non-proportional loading for sequentially 
linear analysis on lattices or other structures has not 
yet received much attention in literature. A way to 
solve this is to run sequentially linear analyses for 
the various load sets in an incremental fashion. First, 
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the first load set is analysed sequentially linear and 
the results are frozen. From this frozen situation, the 
sequentially linear analysis for the second load set is 
undertaken whereby initial stresses, strains and dis­
placements are accounted for. This process requires 
the new critical element for the second (or subse­
quent) load set to be determined again on the basis 
of the principal stress criterion. The principal 
stresses now should be derived on the basis of: 

O"xx = O"xx.O + A ACT xx 

CTyy = CTyy,o + A Acryy 

CTxy = CTxy,O + A ACTxy 

(6) 

for a plane stress situation, with 0 referring to the 
preceding load set(s) and A referring to the incre­
ment for the current load set. This is more cumber­
some than for the case of the initial stresses being 
zero. From the resulting equations for the principal 
stress according to Mohr's circle, A can be solved di­
rectly using e.g. Maple software, or numerically. 

In the present study this was not yet implemented. 
The performance of the model can quite as well be 
illustrated by using a fictitious, proportional load. 
Here, a vertical point load at the top of the fas;ade, 
slightly off-center, was taken as an arbitrary exam­
ple. Fig. 13 shows the result in terms of the vertical 
point load versus displacement. Fig. 14 shows the 
deformed mesh at one of the final steps of the 
sequentially linear procedure. 
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Figure 13. Load-displacement curve for sequentially linear 
analysis of masonry fa9ade under point load. 

The result reveals the very sharp snap-back behavior, 
which is found in the sequentially linear fashion 
without any numerical problems. In the post-peak 
behavior, we observe four nested snaps, which cor­
respond to the subsequent jumps of the crack from 
window to window, starting at the bottom and end-
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Figure 14. Deformed mesh for final stage in Fig. 13. 

ing at the top of the fas;ade. This is an adequate al­
ternative to the nonlinear analyses summarized in 
section l. 

A minor aspect is that the present result showed 
partial stress locking. This was because the mesh 
consisted of quadratic eight-node elements, inte­
grated by a three by three Gaussian scheme, while 
the stress at the fifth, central integration point was 
taken as an element average to be compared with the 
current strength in the saw-tooth curve. This proce­
dure can be made more accurate by using a mesh of 
lower order triangular elements, so that a single inte­
gration point governs the total element behaviour 
and false stress transfer is impossible. 

5 DISCUSSION 

A sequentially linear continuum model for concrete 
fracture has been proposed. The model approximates 
an envelope softening stress-strain curve by a saw­
tooth diagram. In each linear analysis, a critical ele­
ment is traced by comparing element stress with cur­
rent element strength, i.e. with the current peak in 
the saw-tooth diagram. Next the stiffness and 
strength of the critical element are reduced according 
to the subsequent tooth of the diagram, and the proc­
ess is repeated. 

The charm of this model is that words like itera­
tion, ill-conditioning and divergence do not appear 
in the vocabulary. A notched beam analysis shows 
the ability of the method to reproduce the behavior 
of a nonlinear reference analysis on the same pa­
rameters. The advantage of the model especially ap­
pears in case of brittle, complex snap-back behavior 
as was illustrated by large-scale analysis of a ma­
sonry fa<,;ade. 

Although the model thus has potential, much fur­
ther research is necessary, especially with regard to 
mesh objectivity. A method of strength enhancement 



in combination with ultimate strain adjustment in 
order to achieve objective results with respect to 
mesh refinement was outlined. Also objectivity with 
regard to mesh orientation should be studied. Here, 
the strategy followed for nonlinear analysis by 
Oliver (1989) and Jirasek & Zimmermann (2001) to 
accurately compute the crack band width and to use 
a non-local principal stress criterion, can be adopted 
in the same way for sequentially linear analysis. For 
triangular meshes, promising results are obtained al­
ready for the present local principal stress initiation 
criterion, as shown in Fig. 15 for the SEN-beam de­
scribed by Schlangen & Van Mier (1992). 

Figure 15. Deformed mesh for sequentially linear analysis of 
SEN-beam on triangular mesh. A 'hole in the mesh' occurs cor­
responding to the crack direction in the experiment. 

The present formulation of the model is isotropic be­
cause Young's modulus is reduced for all directions. 
Extension of the model to fixed planes of orthotropy 
is possible, including memory of unload­
ing/reloading and full crack closure and re-opening. 
An extension of the model to non-proportional load­
ings has been outlined, which is important in build­
ing engineering as vertical dead load is often super­
imposed by horizontal wind load. 
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