
1 CONTINUOUS   PERZYNA  RATE 
DEPENDENT  FORMULATION 

Similar to the flow theory of plasticity, the 
constitutive relations of Perzyna (1963, 1966) type 
elasto - viscoplastic material formulations may be 
written 
 

: ( )e vp vp= − = −σ σ σ E ε ε& & &                                     (1) 

1( , , ) ( )vp F Fψ ψ
η

= =ε g σ m                              (2)  

: : F∂
= =

∂
m A n A

σ
                                              (3) 

0

( , )( )
N

FF
F

ψ
 

=  
 

σ q                                              (4) 

1 ( ) :Fψ
η

=q H m&                                              (5) 
 
where vpε  represents the viscoplastic portion of 
the total strain tensor ε , η the viscosity and q the 
set of hardening/softening variables defined as a 
tensor of arbitrary order. The relation 1 follows the 
additive decomposition of the total strain rate into 
an elastic and a viscoplastic part e vp= +ε ε ε , quite 
similar to the Prandtl-Reuss equations in case of  
 

 
 
inviscid elasto-plastic constitutive relations. 
Equations 2 and 3 describe a general non-
associated flow rule, whereby the direction of the 
viscoplastic strains m, is obtained by a 
modification of the gradient tensor  n of the yield 
surface F by means of the fourth order 
transformation tensor A. Moreover, ( )Fψ  is a 
dimensionless monotonically increasing over-stress 
function whereby F0 represents a normalizing 
factor. The power N  in equation 4 defines the 
order of the Perzyna viscoplaticity while the 
McCauley brackets in equation 2 defines the 
features of the over--stress function as 
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being  F = F (σ,q) a convex yield function which 
defines the limit of the elastic domain. Finally 
equation 5 represents the evolution law of the 
hardening/softening variables q by means of a 
suitable tensor function  H of the state variables. In 
the continuous formulation, equations 1 to 5 are 
complemented by a consistency parameter λ& , see 
Ponthot (1995), defined as an increasing function 
of the over-stress 
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So that the evolution equations 2 and 5 take now 
the classical forms 
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being  h = H:m . Thus, from equations 2 and 8 
follows 
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We may now define for the viscoplastic range, the 
new constraint condition       
 

1( ) 0F F ψ λη−= − =&   (11)   (11) 
 
which represents a generalization of the inviscid 
yield condition F=0 for rate-dependent Perzyna 
viscoplastic materials. The name continuous 
formulation  is due to the fact that the condition 
η =0  (no viscosity effect) leads to the elastoplastic 
yield condition F=0. Moreover, from equation 7 
follows that when 0η →  the consistency parameter 
remains finite and positive since also the over-
stress goes to zero. The other extreme case, η → ∞  
leads to the inequality 0F <  for every possible 
stress state, indicating that only elastic response 
may be activated. 
The constraint defined by equation 11 allows a 
generalization of the Kuhn-Tucker conditions 
which may be now written as 
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Finally, the viscoplastic consistency condition 
expands into 
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where 
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Other recent and interesting approach to this 
problem is due to Wang (see Wang et al., 1997), 

which includes the strain rate as state variable into 
the flow and viscoplastic potential function, i.e. 
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this also leads to a rate dependent Kuhn-Tucker 
conditions as in case of the continuous Perzyna 
formulation. 
 
2 CONSISTENT TANGENT STIFFNESS 
OPERATOR 

The algorithmic tangent operator can be formulated 
from the linearization of the viscoplastic 
consistency condition, see equation 13 , for a finite 
increment d, quite similar to rate independent 
plasticity, 
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In order to avoid further complications, it is 
supposed here that λ& is accurately approximated by  

/ tλ λ= ∆ ∆& , i.e. ( ) /t Fλ ψ η∆ = ∆ , which leads to 

/d d tλ λ= ∆ ∆& .The consequences of this assumption 
are analyzed in other work of the authors (Carosio 
et al., 2000). 
Proceeding in a similar form to the algebraic 
elastoplastic problem, i.e. substituting in equation 
16 the differential changes of the stress tensor and 
of the state variables evaluated in a consistent form 
with the backward Euler scheme  
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we obtain the relations lg :
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algorithmic operator 
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where :m=m E m , : m=n n E , : m=p p E and the 
scalar values ,   and m m

m p iE E E  defined as 
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The last three equations are similar to the 
elastoplastic case. 
Note: equation 18 is valid for every possible order 
n of the tensor  q  of state variables.  From 
equations  9 and 20  follow that the order of the 
tensor  h  is equal to that of  q ,  i.e. n, while the 
order of  p  is n+2. 
 
3  TIME - DEPENDENT INTERFACE MODEL 

FORMULATION 
 
In this section the rate-dependent extension of the 
interface model by Carol and Lopez (1999) is 
presented. The viscoplastic yield condition of the 
interface constitutive model can be expressed as 
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where σn and  τ are the normal and tangential stress 
components to the interface with 
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The energy dissipated during the fracture process is 
defined as 
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whereby  vcr

nu and vcr
tu  are the normal and tangential 

(critical) rate-dependent rupture displacements, 
respectively. 
The viscoplastic flow is fully associated in tension 
while non-associated in compression, according to 
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being  A a transformation matrix,  n  the gradient 
to the viscoplastic yield surface and m  the gradient 
to the viscoplastic potential function. The factors 

and  dil dil
cf fσ  account for the dilatancy effects in 

the compressive regime by means of a reduction of 
the interface normal component of the stress tensor, 
see Carol and Lopez  (1999). 
The continuum viscoplasticity form of the rate 
dependent interface constitutive model is defined 
by the following equations 
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where u&  are the rate of total relative displacements 
which are decomposed into an elastic  eu&  and a 
viscoplastic component vcru& , (K0) is the elastic 
stiffness matrix which has a diagonal structure with 
non-zero terms equal to the constant assumed 
normal and shear stiffnesses 0

nK = 0
tK . 

. 
The viscoplastic consistency condition, from which 
the algorithmic tangent operator of the rate-
dependent interface model is obtained, takes now 
the form  

1/ 11 ( ) N
i iF r q

N
η ηλ −= ⋅ − −n σ& && &  (34) 

i
i vcr

i

qFr
q W

∂∂
=

∂ ∂
  (35) 

vcr

i vcr

Wq λ∂
=

∂
m

u
&&   (36) 



thereby, the parameters qi of the yield surface, 
which evolve with hardening/softening, are three in 
this case: χ , c and φ . 
 
4 NUMERICAL ANALYSIS 
 
In this section the predictions of the proposed rate-
dependent interface model of the tensile and shear 
tests are analyzed. Figure 1 illustrates the 
performance of the uniaxial tensile test with 
different relations ∆t. For this test the mesh 
indicated in the Figure 1 was used which is 
composed by  2  Q4 elements and one interface 
element in between them. This test was performed 
with the Perzyna exponent N =1 and the ratio Ec/Ej 
= 0.25 between the stiffness of the continuum and 
that of the joint or interface element. The results in 
Figure 1 demonstrate that with increasing viscosity 
the ductility of the post-peak regime increase and 
elastic solution is approached. 
 

 
Figure 1. Uniaxial tensile test. Viscoplastic 
predictions for Perzyna exponent N = 1.0. 
 

 
Figure 2. Uniaxial tensile test. Viscoplastic 
predictions for Perzyna exponent N = 1.25. 

 
Figure 3. Uniaxial tensile test. Viscoplastic 
predictions for Perzyna exponent N = 1.5. 
 
The relevant influence of the Perzyna exponent N 
can be observed from the comparison between the 
results in Figures 2, 3 and 4. There the predictions 
of the rate-dependent interface model for the 
tensile test with N = 1, N = 1.25 and N = 1.5 are 
illustrated for different relations η/∆t. With 
increasing values of N the influence of the 
viscosity (the relation η/∆t)  in the model 
predictions becomes more relevant. 
 

 
Figure 4. Uniaxial tensile test. Predictions for 
different Perzyna exponents . 
 
 
Finally, in Figure 5 the predictions of the model for 
the shear test is indicated. This test was performed 
under a vertical confinement pressure of 2MPa. 
The results illustrate the rate-dependency of the 
model and the increment of ductility with 
increasing rates η/∆t . 
 
 



 
Figure 5. Confined shear test. Elastoplastic and 
viscoplastic predictions for different relations η/∆t . 
 
5 CONCLUSIONS 
 
In this work a continuum Perzyna extension of the 
interface model by Carol and Lopez (1999) was 
presented. The model was implemented in the 
framework of the numerical algorithms for 
continuum viscoplasticity by Carosio, Willam and 
Etse (2000) which include an algorithmic tangent 
operator to improve the convergence rate in the 
non-linear regime. The results in this work 
demonstrate the capabilities of the proposed model 
to reproduce the rate-dependency of interface 
behaviors which leads to ductility increments of 
post-peak responses for increasing rates η/∆t . In 
the next steps of this research the proposed rate-
dependent interface model will be considered to 
analyzed failure behavior of concrete at the meso-
mechanical level when different rates of 
displacements and forces are applied.  
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