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ABSTRACT: A numerical model is proposed to study the mechanical behaviour and ductility of reinforced
concrete beams in bending. We focus on the experimental results of Weiss, Güler and Shah (2001), where a
size effect on the average strain of compressed concrete has been measured by changing the distance of ex-
ternal loads in four point bending beams. In order to reproduce numerically these results, in the proposed ap-
proach the mechanical response of RC beams, and their ductility, are calculated by modelling the progressive
crushing of compressed concrete. In particular, a previous model has been extended to reproduce the effects
due to different boundary conditions in the tested beams. A good agreement between numerical and experi-
mental results has been obtained in the beams with high and low reinforcement ratio, both in the case of high
strength concrete (HSC) and normal strength concrete (NSC).
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1 INTRODUCTION

The mechanical behaviour of compressed concrete
has recently been the object of several investiga-
tions (Markeset & Hillerborg 1995; Bazant & Xiang
1997; Wang & Shrive 1995). The numerical and ex-
perimental models carried out in this field have
mainly regarded the post peak softening branch of
the stress-strain relationship. Generally, in this
stage, progressive damage produces an increase of
compressive strains and a decrease of stresses. All
these phenomena can affect the measure of ductility,
whose magnitude shows a size affect. 

In the paper of Weiss et al. (2001) for example,
the flexural behaviour of reinforced concrete beams
with different constant-moment zone lengths is in-
vestigated. In particular, for each length, the mean
value of compressive strains is evaluated. Since the
damage is localised in different zones of constant
moment, the beams show different ductility, despite
the same cross section. 

The theoretical evaluation of “size effect” has
generally been significant in structural analysis
since the time of Leonardo da Vinci or Galileo Gal-
ilei, when an increase of material strength with the
decrease of structural dimensions was observed.
Thus, in order to obtain a quantitative analysis of the

mechanisms involved in the response of reinforced
concrete beams in bending, a theoretical model is
proposed. We focus on the ultimate stage before
failure of reinforced concrete (RC) beams and, in
particular, on the evaluation of structural ductility
and its size effect.

The model proposed in this paper refers to the
tests of Weiss et al. (2001), regarding four groups of
beams, having different concrete strength (high
HSC or normal NSC) and different percentages of
reinforcement (high HR or low LR). Each group
contains four beams with the same cross-section but
different constant-moment zone length L (respec-
tively 1, 2, 3, and 4 times the effective depth d of the
cross section). Figure 1a shows the tested beam,
whereas the main mechanical properties of materi-
als and the percentage of steel reinforcement are
summarised in Table 1. Results indicate that dam-
age occurs in the compressed concrete of constant-
moment zone, whose average moment curvature re-
lationships M-µ (Fig. 1b) consequently show sof-
tening branches of different slopes. A decrease in
ductility with the increase of L is evident. 

Therefore, it seems necessary to investigate the
failure stage of reinforced concrete beams by mod-
elling the damage mechanisms localised in the com-
pressed concrete.



2 FORMULATION OF A THEORETICAL
MODEL

The mechanical response of concrete prisms sub-
jected to uniaxial compression (Fig. 2a) can be di-
vided into two stages (Fig. 2b). In the first stage,
when the stress is lower than the concrete strength fc,
the material can be considered undamaged. As soon
as the peak stress is reached, localised damage de-
velops in the element and the second stage begins. In
this stage, the progressive sliding of two blocks of
concrete (Fig. 2a) and the softening branch (Fig. 2b)
are evident. In Figure 2a, the angle α between the
horizontal face of the prism and the sliding surface
is assumed to be 17.5°, according to the experimen-

tal observations of Fujita et al. (1998). In the cases
of uniaxial compression, similar values of α are ob-
tained through the Mohr-Coulomb failure criterion,
if the tensile strength of concrete fct is assumed to be
1/10 of the compressive one. 

Both elastic shortening of the undamaged con-
crete and displacement between the two blocks
along the sliding surface (where crack is localised)
rule the average post-peak compressive strain εc of
the prism (Fig. 2). According to some experimental
results, the slope of softening branch of Fig. 2b in-
creases in longer concrete prisms because of the re-
lationship w / H involved in the evaluation of εc .
Therefore, longer prisms behave in a more brittle
manner, and sometimes snap-back can appear in the
stress-strain relationship. In particular, referring to
the symbols depicted in Fig. 2, post peak stains and
stresses can be respectively defined by the following
equations:

(1)

(2)

where a = 0.1 is the reciprocal of the mean slope of
the curve σc / fc - w (Fujita et al. 1998). Assuming
K = a fc cos α, it is possible to obtain:

 , (3)
and substituting (3) into (1), and rearranging:

(4)

For the beam of Figure 3a, assuming plane sec-
tions compatibility, the strain profile of a generic
cross-section (Fig. 3b) can be computed through the
following equation:

(5)

Beams fc As fy fu

MPa mm2 MPa  MPa

NSC-LR-1d 39.8 138.8 395 557

NSC-LR-2d 46.6 138.8 395 557
NSC-LR-3d 46.6 138.8 395 557
NSC-LR-4d 39.8 138.8 395 557

NSC-HR-1d 38.7 382.3 400 634
NSC-HR-2d 38.7 382.3 400 634
NSC-HR-3d 46.7 382.3 400 634

NSC-HR-4d 46.7 382.3 400 634
HSC-LR-1d 98.8 382.3 400 634
HSC-LR-2d 100.6 382.3 400 634

HSC-LR-3d 100.6 382.3 400 634
HSC-LR-4d 98.8 382.3 400 634
HSC-HR-1d 108.3 981.8 431 614

HSC-HR-2d 97.9 981.8 431 614
HSC-HR-3d 97.9 981.8 431 614
HSC-HR-4d 108.3 981.8 431 614

Figure 1. The beams tested by Weiss et al. (2001): a) static conditions; b) moment curvature responses. 
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Table 1. Mechanical and geometrical properties of the beams
tested by Weiss et al. (2001). 



The strains that exceed εc1 , which rule the evolution
of sliding planes, are split up into several rectangles
of base ∆εci (Figs. 3b, 3c). Due to the increase of
εc,max , the increments ∆εci and the sliding planes
progressively involve wider zones of the beam.
However, in case of constant bending moment, it is
not possible to define univocally both the evolution
of the sliding planes and their slip increments ∆si .
For the sake of simplicity, in this paper, the number
of planes originated by ∆εci is assumed to be as low
as possible. This assumption is founded on the hy-
pothesis that new sliding planes are more probably
originated by previous fracture surfaces. Therefore,
only one of the possible crack pattern is depicted in
Figure 3. In case of three point bending beams
(Fig. 4), new sliding planes start from the cross-sec-
tions with higher bending moment, so that the crack
pattern configuration is less ambiguous (Fig. 4c). In
all cases, the strain increment ∆εci , related to the dis-
placement increment ∆si (Fig. 5), affects a volume
of concrete in compression with height y*i and
length 2 Hi :

(6)

(7)

where α is the angle of the sliding planes with re-
spect to the horizontal line (Fig. 5c). 

For a given strain increment ∆εci (Fig. 5b), the dis-
placement variation ∆si , affecting the height y*i
(Fig. 5c), can be computed by substituting (6) and
(7) into (4):

(8)

The derivation of si with respect to y can be also
evaluated from the following equation:

(9)

By means of Eq.(3), the concrete stress can also be
obtained by a differential equation:

Figure 2. Damage localization in compressed concrete: the tests of Jansen & Shah (1997).

Figure 3. Reinforced concrete element in bending: a) cross-section; b) longitudinal strain profile; c) constant-moment zone.
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(10)

and, according to Fantilli et al. (2002a), when
εc1 < εc < εc,max , the stress of compressed concrete
can be computed with the equation:

(11)

In this equation, the stress σc depends on the exten-
sion of the compressive zone yc,max , according to the
size effect model of Hillerborg (1990). However, in
the proposed approach, the mechanical response of
compressed concrete is also a function of the cross-
sectional curvature µ. When εc < εc1 the following
uniaxial stress-strain relationship of CEB-FIP Mod-
el Code (1991) is adopted for the ascending branch
of concrete in compression:

(12)

where Ec1 = fc / εc1. 
When a confinement tension σ3 is present (e.g.

due to stirrups), the values of fc and εc1 , which ap-
pear in the Equations (11) and (12), increase. By as-
suming the linear envelope failure of Figure 6a, the
relationship between the concrete strength fc and σ3
is easily evaluated as:

(13)

where:

;

fc* is the nominal strength without confinement
stresses (σ3 = 0) and ϕ is the angle of internal fric-
tion. The increase of fc is accompanied by an incre-

Figure 4. Reinforced concrete element in bending: a) cross-section; b) longitudinal strain profile; c) linear variation of the moment.
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Figure 5. Reinforced concrete element in bending: a) cross-section; b) longitudinal strain profile; c) longitudinal sliding.
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ment of the peak-strain εc1 , whose growth is
assumed to be directly related to fc (Fig. 6b):

(14)

where ε*c1 and εc1 are respectively the peak-strains
for unconfined (σ3 = 0) and for confined (σ3 > 0)
concrete.

In the constant-moment zone L of a four point
bending beam, the unfailing scatter of concrete
strength makes the definition of crack pattern more
ambiguous. Figure 7a, for example, shows a possi-
ble displacement configuration when in Section 1 a
reduced strength, with respect to Section 2, has been
detected. The bearing capacity of the beam (i.e. the
maximum moment Mu1) must be evaluated in Sec-
tion 1. In the zones closer to this Section, the in-
crease of curvature after the peak produces both a
reduction of the bending moment M and an exten-

sion of damaged zone in compressed concrete. In
other zones (Section 2), where the maximum mo-
ment Mu2 has not been reached, the decrease of M
produces an elastic decrease of curvature µ. There-
fore, as for the compressed concrete prisms of
Figure 2, the failure mechanisms is localised in a
part of the beam. In particular, the softening branch
of the M-µ diagram, evaluated in the constant-mo-
ment zone, shows an increasing slope with the in-
crease of L. Such a failure is similar the failure of
compressed concrete cylinders. 

It must be also observed a reduced ductility of four
point bending beams with larger L, because local-
ised damage is smeared on wider zones. In other
words, the post peak behaviour is ruled by the sof-
tening branch of the moment -curvature M-µ rela-
tionship of the weakest section (Section 1 in
Fig. 7c), whereas, in the other zones elastic unload-
ing should be considered (Section 2 in Fig. 7c). 

Figure 6. Confinement produced by stirrups (Fantilli et al. 2002b): a) linear envelope for concrete strength; b) increment of fc and εc1.
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Figure 7. Reinforced concrete element in bending: a) cross-section; b) longitudinal strain profile; c) damage localization in the con-
stant-moment zone.



Although the position of the weakest section in the
constant-moment zone is always unknown, its exist-
ence cannot be neglected. In fact, due to series-con-
nection between all the sections in these zones, only
the weakest one can follow the quasi-horizontal
branch that precedes the peak of the moment curva-
ture diagrams (Fig. 7c). In this way, except for the
zone with the lower strength (where the damage is
localised), the other sections of the beam cannot re-
lease all their potential ductility. Starting from these
assumptions, it is possible to explain the dependence
of four point bending beams ductility on the con-
stant-moment zone length, as observed in the tests
by Weiss et al. (2001). 

3 COMPARISON BETWEEN THE EXPERI-
MENTAL RESULTS OF WEISS ET AL.
(2001) AND THE NUMERICAL RESULTS OF
THE PROPOSED MODEL

The higher ductility of the beams with a shorter con-
stant-moment zone length (Weiss et al. 2001) cannot
be theoretically reproduced through Equations (11)
and (12). In these equations, both damage localiza-

tion and confinement produced by external load P
are not taken into account. Due to P, the compressed
concrete is confined and its strength shows a local
increase according to Equations (13) and (14)

(Fig. 8). To reproduce numerically this phenome-
non, it is necessary to define the geometry of con-
fined zones. As is shown in Figure 9, the confined
zones are bounded on the top of the beam by the
sliding planes of compressed concrete, which start
from the points where the loads are applied. Since
they extend to the border of compressed zone where
the concrete strength is reached (incipient sliding),
the whole constant-moment zone can be confined
(Fig. 9a). This is true in the cases of short distance
between the applied forces or deep compressed
zones (high reinforcement ratio).

For the sake of simplicity, the mechanical re-
sponse is obtained by analysing two representative
sections: Section AA and Section BB of Figure 9.
As is explained before, since a series connection be-
tween cross-sections is established in the constant-
moment zone, damage starts in the cross-section
with the lowest concrete strength. In particular, in
proximity of loads P, sliding planes grow from un-
confined concrete to confined zones (with a higher
resistance). Schematically this behaviour is repro-
duced by the Section B-B of Figures 9a, 9b, where
an average confinement σ3 = P / (2 B y*i / tan α) is
assumed for y*i > y0 . In the zones closer to Section
B-B, concrete sliding displacements increase, thus
their values are doubled with respect to the ones ob-
tained from Equation (9). Section AA is located in
the middle of the constant-moment zone, where con-
finement stresses σ3 are lower compared to Section
BB (Fig. 9a), or null as in the case of Figure 9b. 

The mean deformability of the constant-moment
zone can be obtained by considering the effect of
damage localization in the Section (A-A or B-B)
with the lower peak moment in the M-µ relationship.
Consequently, the descending post-peak branch is
ruled by the softening behaviour of the damaged
cross-section and by the linear elastic unloading of
the undamaged ones. Both these contributes are as-
sumed as directly proportional to referring zone
length. 

Figure 8. Confinement produced by the applied forces P.

Figure 9. Confinement in the constant-moment zone: a) confinement in the whole length L; b) confinement in a part of L.



According to the tests, a strict correlation between
the ductility and constant-moment zone length L is
shown by the numerical results of the proposed
model. This is evident in Figure 10 and Figure 11,
where the mean compressive top fiber strains εme ex-
perimentally evaluated are compared with the nu-
merical ones. A little discrepancy is revealed for
beams HSC-LR, made of high strength concrete and
low reinforcement ratio (Fig. 11), for which the
maximum bending moment and ductility are overes-
timated. In the case of lower reinforced concrete
beams the magnitude of damaged zones, approxi-
mately equivalent to depth of compressed concrete,
can drastically reduce the ductility contribution of
the undamaged cross-sections. Therefore, the peak
moment is reached when the inelastic strains are
lower than the ones of undamaged concrete.

4 CONCLUSIONS

To analyse the ultimate stage of reinforced con-
crete beams, a mechanical model for compressed
concrete has been proposed by Fantilli et al.
(2002a). Afterwards, this approach has been extend-
ed to confined concrete subjected to compressive
loads in order to simulate the effectiveness of stir-
rups confinement (Fantilli et al. 2002b). In the
present paper, the model has been further refined
with the aim of reproducing different boundary con-
ditions of tests. The good agreement between the nu-
merical results and the experimental measures of
Weiss et al. (2001) demonstrate the effectiveness of
the model in computing the mechanisms that affect
reinforced concrete beams during the ultimate stage.
In particular, it is possible to define the zones where
the maximum strains are localised, and consequent-
ly to evaluate the flexural response of reinforced
concrete beams and its size dependence (with regard
to length and height).

Figure 10. Average compressive top fiber strain εme in the constant-moment zone L: comparison between the numerical results of
the proposed model and the experimental ones by Weiss et al. (2001), measured for the beams of normal strength concrete (NSC)
with high (HR) and low (LR) reinforcement ratio.
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