
Peridynamic modeling of concrete structures 
 
Walter H. Gerstle & Nicolas Sau 
University of New Mexico, Albuquerque, New Mexico, U.S.A. 
 
 

ABSTRACT: The peridynamic model is applied to the computational analysis of plain and reinforced 
concrete structures. The peridynamic model is essentially a size-scaleable, continuum version of a 
molecular dynamics model. No assumption about the continuity of displacements is required in the model. 
While the continuum mechanics model requires concepts of stress and strain, the peridynamic model does 
not. Elasticity, cracking, and distributed damage emerge naturally from the peridynamic theory. The basic 
theory and several example problems are presented. The peridynamic model is promising from both 
conceptual and computational points of view for simulating the behavior of reinforced concrete structures. 
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1 INTRODUCTION 
 
1.1 Why concrete is difficult to model  
 Typically, computational continuum mechanics 

starts with an assumption of a spatially continuous 
and differentiable displacement field. Strains are 
obtained from spatial derivatives of the 
displacement field. Stresses are related to strains 
via Hooke’s law or some nonlinear constitutive 
relation. Newton’s second Law, F = ma, is then 
applied to a differential free body, resulting in the 
differential equations of either static or dynamic 
equilibrium.  These differential equations are then 
approximately satisfied on the analysis domain, 
subject to specified initial and prescribed 
conditions. 

Concrete is difficult to model because it is a so-
called “strain-softening material”.  In such 
materials, subsequent to reaching the tensile 
strength, the strains localize to become what are 
commonly called cracks and shear bands. To 
prevent these cracks and shear bands from 
deforming excessively, reinforcing steel is usually 
provided in concrete structures. Due to the 
complexity of the interaction between the concrete 
and the reinforcing steel, a large number of cracks 
can form at significantly differing size scales. 
Using the finite element method (FEM), cracks can 
be modeled either discretely or in a smeared 
fashion. With the discrete crack model, the 
geometric continuum is altered to allow cracks to 
be modeled on the boundary. With the smeared 
crack model, on the other hand, the geometric 
domain of the continuum remains unchanged, but 
the material properties are changed to reflect the 
presence of damaged material regions. Neither the 
smeared crack nor the discrete crack approach is 
fully satisfactory for modeling the behavior of 
reinforced concrete structures at all size scales. 

The finite element method is similarly based 
upon the assumption of continuity of 
displacements, as well as continuity of a specified 
number of displacement derivatives, within the 
domain of the analysis.   

Likewise, classical fracture mechanics is founded 
upon the assumption that the theory of continuum 
elasticity holds within the domain of analysis, and 
a crack is modeled as a boundary feature of the 
elastic domain to be simulated.  



Recently, in order to regularize the finite element 
method when used in a smeared cracking context, 
nonlocal damage mechanics has been employed 
(Bazant & Jirasek 2002). 

As described by Silling (Silling 1998; Silling 
2002A; Silling 2002B; Silling et al. 2003), the 
peridynamic model may be implemented on the 
computer essentially as a grid of interacting 
discrete particles in a 3D geometrical space.  These fracture mechanics, damage mechanics, 

and nonlocal continuum mechanics approaches to 
compensate for the shortcomings of the 
assumptions of continuum mechanics theory have 
become complex and top-heavy, and there is a 
simpler approach that can be taken, called the 
peridynamic (near-force) method, described in the 
next section.  

 
2.2 Basic Theory 
 
Refer to Figure 1 for terminology. We assume that 
Newton’s second law holds true on an 
infinitesimally small particle, dVi, of mass dmi, 
undeformed position x  i, and displacement, u  i, 
located within domain, R:  
( ) ( )∑= dFudm ii && ,         (1) 2 THE PERIDYNAMIC MODEL 

 
where ( )∑ dF  is the force vector acting on the 

free body, and iu&&  is particle i’s acceleration. (The 

underscore signifies a vector quantity, while the 
over dot signifies differentiation with respect to 
time.) 

2.1 Overview of the model 
 
Recently, a fundamental method, called the 
peridynamic model (Silling 1998; 2000; 2002A; 
2002B; Silling et al. 2003) for computational 
mechanical analysis as been introduced that makes 
no assumption of continuity of displacements. 
Thus, continuous and discontinuous (cracking and 
fragmentation) behavior can be handled using a 
single, simple paradigm. The method, which can be 
thought of as a size-scalable computational 
molecular dynamics approach, lends itself well to 
the modeling of reinforced concrete structures. The 
method is of the class of nonlocal models (Bazant 
and Jirasek 2002). 
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 The peridynamic model makes no assumption of 

continuous or small deformation behavior. It has no 
requirement for the concepts of stress and strain. 
The peridynamic model starts with the assumption 
that Newton’s second law holds true on every 
infinitesimally small freebody (or particle) within 
the domain of analysis. A force density function, 
called the pairwise force function, (with units of 
force per unit volume per unit volume) between 
each pair of infinitesimally small particles is 
postulated to act if the particles are closer together 
than some finite distance, called the material 
horizon. The pairwise force function may be 
assumed to be a function of the relative position 
and the relative displacement between the two 
particles. A spatial integration process is employed 
to determine the total force acting upon each 
particle, and a time integration process is employed 
to track the positions of the particles due to the 
applied body forces and applied displacements. 
One of the advantages of the peridynamic approach 
is that no finite element meshes are required. It is 
truly a meshless method. 

 
 
 
 
 
 
Figure 1. Terminology for peridynamic model. 
 

Dividing both sides of Equation 1 by the 
differential volume of particle i, dVi, and 
partitioning the force into components internal and 
external to the system of particles under 
consideration gives 

bLu +=&&ρ ,          (2) 

where ρ is the mass density at position x  i, L is the 
force vector per unit volume due to interaction with 
all other particles (for example, particle j) in 
domain R, and b  is the externally applied body 
force vector per unit volume.  



The internal material force density per unit 
volume, L , acting upon particle i, is an integral 
over all other particles, j, within the domain, R: 

( )∫=
R

jij dVfL ,          (3) 

where ijf  is the density of force densities between 

dVi and the surrounding particles, dVj. The 
pairwise force function, ijf , which has units of 

force per unit volume squared, can be viewed as a 
material constitutive property. In the simplest case, 
let us assume elastic behavior. In this case 

( ) ( )ijijijijijijij fxxuuff ξη ,, =−−= ,       (4) 

so the pairwise force function is a function of 
relative displacement and relative position between 
particles i and j.  More complex constitutive 
relations, incorporating internal material state 
variables, could also be contemplated. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Micro elastic peridynamic model for plain 
concrete. This model governs the forces between two 
particles situated within the material horizon, δ, of each 
other. 
 

Silling (Silling 1998) has proposed a simple 
nonlocal peridynamic constitutive model 
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if *uijijij <−+ ξηξ and  δηξ <+ ijij . 

( ) 0, =ijijijf ξη  otherwise. Here µ, δ, and u* are 

positive “microelastic” constants. Thus, the 
“spring” connecting any two particles is linear for 
small relative displacements, but it breaks when the 
relative displacement between the two particles 
exceeds u*. Only particles within a distance from 

each other, δ (the material horizon), in the 
deformed configuration interact. 

A simple micro elastic peridynamic model (with 
tensile limit) for concrete is shown in Figure 2. As 
will be demonstrated with the subsequent 
examples, this model appears to be sufficiently 
comprehensive to model concrete elasticity, tensile 
fracture, shear bands, and crushing. 
 
3 NUMERICAL IMPLEMENTATION 
 
3.1 Approach used in Emu 
 
Emu is the name of the software program created 
by Silling [Silling 1998], and used to model the 
examples shown in this paper. In Emu, a cubical 
grid of nodes spaced equally in all dimensions 
serves as the base space for describing particle 
motion. Material properties and applied 
displacement and velocity initial and prescribed 
conditions and applied body loadings are defined 
using sequentially numbered primitive regions, as 
shown in Figure 3. A node inherits material 
properties and prescribed conditions from the first 
region within which the node appears. Nodes not 
contained within regions are ignored in the 
computations. 
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Figure 3. Approach to structural modeling used by Emu. 

 
Time steps are automatically computed based 

upon time integration stability requirements. The 
material horizon, δ, is automatically chosen to be 
approximately three times the node grid spacing, to 
ensure that a sufficient number of nodes are 
included to provide a reasonable approximation to 
the integrated force acting on each particle, based 
upon Equation 3. The microelastic stiffness, µ, the 
microelastic bond-breaking distance, u*, and the 
material horizon, δ, are automatically be altered to 
account for differing grid spacings. 



Emu can be run on a multiple processor high-
performance parallel computer; however each of 
the examples shown in this paper was run on a 
single processor computer in less than four hours. 

 
3.2 Possible peridynamic modeling strategies 
 
Emu currently makes use of a structured cubical 
background grid, using an explicit time integration 
approach. This is a highly robust modeling 
approach, but rather inefficient for solution of static 
problems. To improve computational efficiency, it 
is possible to employ mapped material regions of 
varying dimensionality and shape. Each material 
region shown in Figure 3 could also be individually 
discretized with mapped nodes, as described in 
[Gerstle 2002]. For material regions modeled with 
dimensionality less than three, it will be necessary 
to add rotational degrees of freedom to the nodes, 
to allow moments to be sustained by the material. 
For example, to model reinforced concrete 
structures, it will be efficacious to model 
reinforcement as a one-dimensional domain, while 
the concrete would be modeled as either a two-
dimensional (membrane, plate or shell) or a three-
dimensional (solid) domain.  

The resulting equations are highly nonlinear due 
to the micro elastic model depicted in Figure 2. 
While an explicit time integration approach is the 
most stable and accurate approach, it will be useful 
to develop efficient quasistatic solution techniques. 
In such a technique, the solution would proceed as 
stepwise linear increments, as bonds are broken 
one at a time. Thus, computational time would not 
be wasted during time domains (or pseudo-time 
domains) where no bonds are being broken. 
Efficient methods for altering the stiffness matrix 
due to local bond nonlinearities can be developed. 
 
4 EXAMPLE PROBLEMS 
 
For simplicity in graphical depiction of the results, 
and to limit computer simulation times to a five-
hour limit per example using a single-processor 
computer, all of the problems shown in this paper 
are two-dimensional. Only one layer of nodes in 
the out-of-page direction is included in each 
computation, to reduce computational effort 
required to solve the problem. Hence, the following 
examples are merely illustrative of the possibilities 
of the peridynamic model, rather than simulations 
of actual laboratory tests. However, with more 
powerful parallel-processor computers and better 

graphical display methods, all of these problems 
could have been modeled as fully three-
dimensional problems. 

We next simulate a uniaxial tension specimen, a 
uniaxial compression specimen, tensile and shear 
pullout of an anchor bolt, tensile pull-out of two 
anchor bolts, and the splice of two embedded 
ribbed reinforcing bars in tension. 
 
4.1Uniaxial tension specimen 
 
This problem is a cube of concrete 2m wide by 
1.2m high, in what amounts essentially to plane-
strain conditions. The microelastic concrete model 
is shown in Figure 2, with parameters µ, u*, and δ 
chosen to simulate the properties of a concrete with 
sound speed of 5000 m/s, and tensile strain limit of 
0.000166. The bottom 0.2m of the specimen is 
constrained to have zero prescribed vertical 
velocity component, and the top 0.2m of the 
specimen has a prescribed downward velocity of 
0.3 m/s. Figure 4 shows the Emu input file. 

 

Uniaxial Tension  Specimen 
processors 1 1 1 
grid_dimensions 21  3 21  
max_time  0.1 
max_time_steps  10000 
plot_dump_frequency 1000 
grid_spacing  0.06 
number_of_material_regions  1 
material_region_geometry_1 
  1  -.6  .6 -.01 .01  -1.2  0. 
density_1 2400 
microelastic_1  1 5000 4.14e6 0.000166 
material_region_ic_1  0 0 0    0 0 0 
number_of_boundary_regions  2 
boundary_region_geometry_1 
  1 -1. 1. -.1 .1 -1.2 -1.0 
boundary_region_geometry_2 
  1 -1. 1. -.1 .1 -.2   0. 
boundary_condition_1  3 0 1 1 0 0 0   1. 
boundary_condition_2  3 0 1 1 0 0 .3  1. 
plot_all 
viscous_damping_coefficient  .9 

Figure 4. Emu input file, used to model the uniaxial 
tension specimen described in Section 4.1. 
 

Figure 5 shows a plot of the bond damage plotted 
on the deformed shape after the top of the 
specimen had moved up 1.1 cm. As expected, a 



horizontal tensile fracture develops (near the top of 
the specimen). The computed behavior appears to 
be entirely plausible. 

The width of the shear band is essentially 
governed by the value of the material horizon, δ. 
However, as mentioned earlier, the material 
horizon δ is chosen to be three times the nodal 
spacing. In concrete, there is an actual physical 
material horizon that is approximately governed by 
the aggregate size. Therefore, the width of the 
shear bands indicated in Figure 6 is perhaps larger 
than would be predicted if a finer mesh were 
employed. Further research should clarify 
convergence characteristics of the peridynamic 
approach. 

 

 

 
4.3 Anchor bolt pullout in tension and shear 
 
A more complex situation is involved in the pullout 
of a steel anchor bolt, shown in Figure 7(a). The 
pullout rate is 0.3 m/s. Again using a two-
dimensional plane strain simulation of what is an 
essentially three-dimensional problem, the damage 
and deformed shape of the pullout of a steel bolt is 
shown in Figure 7(b).  

 
Figure 5. Uniaxial tension specimen; damage shown (as 
color bands) on magnified deformed shape. 
 
4.2Uniaxial compression specimen 
  
This problem is identical to the uniaxial tension 
problem described in the previous section, with the 
exception that the prescribed velocity at the top of 
the specimen is now down, rather than up, and also 
a small material region of reduced stiffness was 
introduced near the top left-hand side of the 
specimen to induce a small initial asymmetry. 

 

Figure 6 shows a picture of the damage plotted 
as color bands on the (magnified) deformed shape 
after the top of the specimen had moved down 1.2 
cm. Notice the diagonal shear bands that form, as 
well as the dynamic ejection of crushed material 
from the top sides of the specimen. The computed 
behavior appears to be entirely plausible. Figure 7(a). Anchor pullout problem: undeformed shape. 

  

  
Figure 6. Uniaxial compression specimen; damage 
shown (as color bands) on magnified deformed shape. 

Figure 7(b). Anchor pullout problem: color plot of 
damage on magnified deformed shape. 



The concrete properties are the same as those in the 
previous examples, and the steel bolt is given a 
sufficiently high yield strength that it does not 
yield. The geometric dimensions of the concrete 
are essentially that same as in the previous 
examples. As is evident from Figure 7(b), there is 
damage adjacent to the steel anchor bolt, as well as 
horizontal and vertical planes of damage adjacent 
to the anchor bolt.   

at 0.3 m/s  in opposing vertical directions. Tensile 
cracks, shear cracks, and shear bands are evident. 

 

 

 

 

Figure 9(b). Bond-slip: magnified deformed shape, at 
later stage of damage. 

 
4.5 Splice of ribbed reinforcing bars 

 
Figures 10 and 11 each show three successive 
deformed shapes of a two-dimensional 
representation of a splice between two ribbed 
reinforcing bars embedded in concrete and pulled 
in opposing directions. The only difference 
between the simulation depicted in Figure 10 and 
that depicted in Figure 11 is that the grid spacing is 
refined by a factor of two in the latter figure. 

Figure 8. Anchor shear problem: plot of damage on 
magnified deformed shape. 
 

In Fig. 8, the anchor bolt simulation is repeated, 
with the difference that the applied velocity at the 
top of the bolt is now to the right. Zones of damage 
appear as lighter and darker zones in the figure.  

   

 
4.4 Pullout of two anchor bolts 

 
Figures 9(a) and 9(b) show successive deformed 

shapes of a 1.2m wide by 1m high concrete 
specimen with two embedded anchor bolts pulled  

 

 

(a)                       (b)                         (c) 
Figure 10. Magnified deformed shapes of splice of 
reinforcing bars in concrete at three stages (coarse 
discretization – grid spacing is 0.06 m). 

 

Figure 9(a). Bond-slip: magnified deformed shape, at 
early stage of damage. 

 

These figures show essentially the same 
deformation mechanisms despite the differing 
discretization scales, giving some evidence that the 
deformation mechanisms are in fact objective, and 
independent of the discretization. Furthermore, the 
results seem to be reasonable in light of the 
authors’ observations of laboratory experiments. 



Further development is necessary to determine if in 
fact the implementation of the peridynamic model 
developed in Emu can yield truly objective results, 
with detailed predictive capability. 

• As the grid is refined spatially, the stable time 
step size is also decreased. Thus, the number 
of computations required increases 
dramatically with grid refinement. (Of course, 
this is also true with any other method of 
computational modeling.) 

 

   

Some research issues to be resolved include: 
• Development of microelastic, microplastic, 

and rate-sensitive peridynamic models. 
• Development of models including dimension 

simplification: bars, beams, plates, and shells. 
• Development of rigorous convergence 

estimates. Can any convergence guarantees be 
developed? 

• Development of efficient solution algorithms. 
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5 CONCLUSIONS 
 
The peridynamic model provides an alternative 
approach to the modeling of reinforced concrete 
that avoids any presumption of a continuous 
displacement field. Neither the concept of strain 
nor the concept of stress is required by this model.  
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