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ABSTRACT: The peridynamic model is applied to the computational analysis of plain and reinforced
concrete structures. The peridynamic model is essentially a size-scaleable, continuum version of a
molecular dynamics model. No assumption about the continuity of displacements is required in the model.
While the continuum mechanics model requires concepts of stress and strain, the peridynamic model does
not. Elasticity, cracking, and distributed damage emerge naturally from the peridynamic theory. The basic
theory and several example problems are presented. The peridynamic model is promising from both
conceptual and computational points of view for simulating the behavior of reinforced concrete structures.
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1 INTRODUCTION
1.1 Why concrete is difficult to model

Concrete is difficult to model because it is a so-
called “strain-softening material”. In such
materials, subsequent to reaching the tensile
strength, the strains localize to become what are
commonly called cracks and shear bands. To
prevent these cracks and shear bands from
deforming excessively, reinforcing steel is usually
provided in concrete structures. Due to the
complexity of the interaction between the concrete
and the reinforcing steel, a large number of cracks
can form at significantly differing size scales.
Using the finite element method (FEM), cracks can
be modeled either discretely or in a smeared
fashion. With the discrete crack model, the
geometric continuum is altered to allow cracks to
be modeled on the boundary. With the smeared
crack model, on the other hand, the geometric
domain of the continuum remains unchanged, but
the material properties are changed to reflect the
presence of damaged material regions. Neither the
smeared crack nor the discrete crack approach is
fully satisfactory for modeling the behavior of
reinforced concrete structures at all size scales.

1.2 FEM, continuum mechanics, and fracture

mechanics

Typically, computational continuum mechanics
starts with an assumption of a spatially continuous
and differentiable displacement field. Strains are
obtained from spatial derivatives of the
displacement field. Stresses are related to strains
via Hooke’s law or some nonlinear constitutive
relation. Newton’s second Law, F = ma, is then
applied to a differential free body, resulting in the
differential equations of either static or dynamic
equilibrium. These differential equations are then
approximately satisfied on the analysis domain,
subject to specified initial and prescribed
conditions.

The finite element method is similarly based
upon the assumption of continuity of
displacements, as well as continuity of a specified
number of displacement derivatives, within the
domain of the analysis.

Likewise, classical fracture mechanics is founded
upon the assumption that the theory of continuum
elasticity holds within the domain of analysis, and
a crack is modeled as a boundary feature of the
elastic domain to be simulated.



Recently, in order to regularize the finite element
method when used in a smeared cracking context,
nonlocal damage mechanics has been employed
(Bazant & Jirasek 2002).

These fracture mechanics, damage mechanics,
and nonlocal continuum mechanics approaches to
compensate for the shortcomings of the
assumptions of continuum mechanics theory have
become complex and top-heavy, and there is a
simpler approach that can be taken, called the
peridynamic (near-force) method, described in the
next section.

2 THE PERIDYNAMIC MODEL
2.1 Overview of the model

Recently, a fundamental method, called the
peridynamic model (Silling 1998; 2000; 2002A;
2002B; Silling et al. 2003) for computational
mechanical analysis as been introduced that makes
no assumption of continuity of displacements.
Thus, continuous and discontinuous (cracking and
fragmentation) behavior can be handled using a
single, simple paradigm. The method, which can be
thought of as a size-scalable computational
molecular dynamics approach, lends itself well to
the modeling of reinforced concrete structures. The
method is of the class of nonlocal models (Bazant
and Jirasek 2002).

The peridynamic model makes no assumption of
continuous or small deformation behavior. It has no
requirement for the concepts of stress and strain.
The peridynamic model starts with the assumption
that Newton’s second law holds true on every
infinitesimally small freebody (or particle) within
the domain of analysis. A force density function,
called the pairwise force function, (with units of
force per unit volume per unit volume) between
each pair of infinitesimally small particles is
postulated to act if the particles are closer together
than some finite distance, called the material
horizon. The pairwise force function may be
assumed to be a function of the relative position
and the relative displacement between the two
particles. A spatial integration process is employed
to determine the total force acting upon each
particle, and a time integration process is employed
to track the positions of the particles due to the
applied body forces and applied displacements.
One of the advantages of the peridynamic approach
is that no finite element meshes are required. It is
truly a meshless method.

As described by Silling (Silling 1998; Silling
2002A; Silling 2002B; Silling et al. 2003), the
peridynamic model may be implemented on the
computer essentially as a grid of interacting
discrete particles in a 3D geometrical space.

2.2 Basic Theory

Refer to Figure 1 for terminology. We assume that
Newton’s second law holds true on an
infinitesimally small particle, dV;, of mass dm;,
undeformed position x;, and displacement, u;,
located within domain, R:

(dm, )i, = 3 (dF ). ()

where Z(dF ) is the force vector acting on the

free body, and i, is particle i’s acceleration. (The

underscore signifies a vector quantity, while the
over dot signifies differentiation with respect to

time.)
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Figure 1. Terminology for peridynamic model.

Dividing both sides of Equation 1 by the
differential volume of particle i, dV;, and
partitioning the force into components internal and
external to the system of particles under
consideration gives

pii=L+b, o)

where p is the mass density at position x;, L is the

force vector per unit volume due to interaction with
all other particles (for example, particle j) in

domain R, and b is the externally applied body
force vector per unit volume.



The internal material force density per unit
volume, L , acting upon particle i, is an integral
over all other particles, j, within the domain, R:

L={{f, kv, ®

where fy is the density of force densities between

dV; and the surrounding particles, dV;. The
pairwise force function, fl.j, which has units of

force per unit volume squared, can be viewed as a
material constitutive property. In the simplest case,
let us assume elastic behavior. In this case

fi=tuex )= flng) @
so the pairwise force function is a function of
relative displacement and relative position between
particles i and j. More complex constitutive

relations, incorporating internal material state
variables, could also be contemplated.
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Figure 2. Micro elastic peridynamic model for plain
concrete. This model governs the forces between two
particles situated within the material horizon, 3, of each
other.

Silling (Silling 1998) has proposed a simple
nonlocal peridynamic constitutive model
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positive “microelastic” constants. Thus, the
“spring” connecting any two particles is linear for
small relative displacements, but it breaks when the
relative displacement between the two particles
exceeds u’. Only particles within a distance from

each other, & (the material horizon), in the
deformed configuration interact.

A simple micro elastic peridynamic model (with
tensile limit) for concrete is shown in Figure 2. As
will be demonstrated with the subsequent
examples, this model appears to be sufficiently
comprehensive to model concrete elasticity, tensile
fracture, shear bands, and crushing.

3 NUMERICAL IMPLEMENTATION
3.1 Approach used in Emu

Emu is the name of the software program created
by Silling [Silling 1998], and used to model the
examples shown in this paper. In Emu, a cubical
grid of nodes spaced equally in all dimensions
serves as the base space for describing particle
motion.  Material  properties and  applied
displacement and velocity initial and prescribed
conditions and applied body loadings are defined
using sequentially numbered primitive regions, as
shown in Figure 3. A node inherits material
properties and prescribed conditions from the first
region within which the node appears. Nodes not
contained within regions are ignored in the
computations.
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Figure 3. Approach to structural modeling used by Emu.

Time steps are automatically computed based
upon time integration stability requirements. The
material horizon, J, is automatically chosen to be
approximately three times the node grid spacing, to
ensure that a sufficient number of nodes are
included to provide a reasonable approximation to
the integrated force acting on each particle, based
upon Equation 3. The microelastic stiffness, p, the
microelastic bond-breaking distance, u*, and the
material horizon, §, are automatically be altered to
account for differing grid spacings.



Emu can be run on a multiple processor high-
performance parallel computer; however each of
the examples shown in this paper was run on a
single processor computer in less than four hours.

3.2 Possible peridynamic modeling strategies

Emu currently makes use of a structured cubical
background grid, using an explicit time integration
approach. This is a highly robust modeling
approach, but rather inefficient for solution of static
problems. To improve computational efficiency, it
is possible to employ mapped material regions of
varying dimensionality and shape. Each material
region shown in Figure 3 could also be individually
discretized with mapped nodes, as described in
[Gerstle 2002]. For material regions modeled with
dimensionality less than three, it will be necessary
to add rotational degrees of freedom to the nodes,
to allow moments to be sustained by the material.
For example, to model reinforced concrete
structures, it will be efficacious to model
reinforcement as a one-dimensional domain, while
the concrete would be modeled as either a two-
dimensional (membrane, plate or shell) or a three-
dimensional (solid) domain.

The resulting equations are highly nonlinear due
to the micro elastic model depicted in Figure 2.
While an explicit time integration approach is the
most stable and accurate approach, it will be useful
to develop efficient quasistatic solution techniques.
In such a technique, the solution would proceed as
stepwise linear increments, as bonds are broken
one at a time. Thus, computational time would not
be wasted during time domains (or pseudo-time
domains) where no bonds are being broken.
Efficient methods for altering the stiffness matrix
due to local bond nonlinearities can be developed.

4 EXAMPLE PROBLEMS

For simplicity in graphical depiction of the results,
and to limit computer simulation times to a five-
hour limit per example using a single-processor
computer, all of the problems shown in this paper
are two-dimensional. Only one layer of nodes in
the out-of-page direction is included in each
computation, to reduce computational effort
required to solve the problem. Hence, the following
examples are merely illustrative of the possibilities
of the peridynamic model, rather than simulations
of actual laboratory tests. However, with more
powerful parallel-processor computers and better

graphical display methods, all of these problems
could have been modeled as fully three-
dimensional problems.

We next simulate a uniaxial tension specimen, a
uniaxial compression specimen, tensile and shear
pullout of an anchor bolt, tensile pull-out of two
anchor bolts, and the splice of two embedded
ribbed reinforcing bars in tension.

4.1Uniaxial tension specimen

This problem is a cube of concrete 2m wide by
1.2m high, in what amounts essentially to plane-
strain conditions. The microelastic concrete model
is shown in Figure 2, with parameters p, u*, and &
chosen to simulate the properties of a concrete with
sound speed of 5000 m/s, and tensile strain limit of
0.000166. The bottom 0.2m of the specimen is
constrained to have zero prescribed vertical
velocity component, and the top 0.2m of the
specimen has a prescribed downward velocity of
0.3 m/s. Figure 4 shows the Emu input file.

Uniaxial Tension Specimen
processors 1 1 1
grid_dimensions 21 3 21
max_time 0.1
max_time_steps 10000
plot dump_frequency 1000
grid_spacing 0.06
number of material regions 1
material region geometry 1
1 -6 .6-.01.01 -1.2 0.
density 1 2400
microelastic 1 15000 4.14e6 0.000166
material region ic 1 000 000
number of boundary regions 2
boundary region geometry 1
1-1.1.-1.1-1.2-1.0
boundary region_geometry 2
1-1.1.-.1.1-2 0.
boundary condition 1 3011000 1.
boundary condition 2 301100.3 1.
plot_all
viscous_damping coefficient .9

Figure 4. Emu input file, used to model the uniaxial
tension specimen described in Section 4.1.

Figure 5 shows a plot of the bond damage plotted
on the deformed shape after the top of the
specimen had moved up 1.1 cm. As expected, a



horizontal tensile fracture develops (near the top of
the specimen). The computed behavior appears to
be entirely plausible.

Figure 5. Uniaxial tension specimen; damage shown (as
color bands) on magnified deformed shape.

4.2Uniaxial compression specimen

This problem is identical to the uniaxial tension
problem described in the previous section, with the
exception that the prescribed velocity at the top of
the specimen is now down, rather than up, and also
a small material region of reduced stiffness was
introduced near the top left-hand side of the
specimen to induce a small initial asymmetry.

Figure 6 shows a picture of the damage plotted
as color bands on the (magnified) deformed shape
after the top of the specimen had moved down 1.2
cm. Notice the diagonal shear bands that form, as
well as the dynamic ejection of crushed material
from the top sides of the specimen. The computed
behavior appears to be entirely plausible.

Figure 6. Uniaxial compression specimen; damage
shown (as color bands) on magnified deformed shape.

The width of the shear band is essentially
governed by the value of the material horizon, 9.
However, as mentioned earlier, the material
horizon 6 is chosen to be three times the nodal
spacing. In concrete, there is an actual physical
material horizon that is approximately governed by
the aggregate size. Therefore, the width of the
shear bands indicated in Figure 6 is perhaps larger
than would be predicted if a finer mesh were
employed. Further research should clarify
convergence characteristics of the peridynamic
approach.

4.3 Anchor bolt pullout in tension and shear

A more complex situation is involved in the pullout
of a steel anchor bolt, shown in Figure 7(a). The
pullout rate is 0.3 m/s. Again using a two-
dimensional plane strain simulation of what is an
essentially three-dimensional problem, the damage
and deformed shape of the pullout of a steel bolt is
shown in Figure 7(b).

Figure 7(a). Anchor pullout problem: undeformed shape.

Figure 7(b). Anchor pullout problem: color plot of
damage on magnified deformed shape.



The concrete properties are the same as those in the
previous examples, and the steel bolt is given a
sufficiently high yield strength that it does not
yield. The geometric dimensions of the concrete
are essentially that same as in the previous
examples. As is evident from Figure 7(b), there is
damage adjacent to the steel anchor bolt, as well as
horizontal and vertical planes of damage adjacent
to the anchor bolt.

Figure 8. Anchor shear problem: plot of damage on
magnified deformed shape.

In Fig. 8, the anchor bolt simulation is repeated,
with the difference that the applied velocity at the
top of the bolt is now to the right. Zones of damage
appear as lighter and darker zones in the figure.

4.4 Pullout of two anchor bolts
Figures 9(a) and 9(b) show successive deformed

shapes of a 1.2m wide by 1m high concrete
specimen with two embedded anchor bolts pulled

Figure 9(a). Bond-slip: magnified deformed shape, at
early stage of damage.

at 0.3 m/s in opposing vertical directions. Tensile
cracks, shear cracks, and shear bands are evident.

Figure 9(b). Bond-slip: magnified deformed shape, at
later stage of damage.

4.5 Splice of ribbed reinforcing bars

Figures 10 and 11 each show three successive
deformed shapes of a  two-dimensional
representation of a splice between two ribbed
reinforcing bars embedded in concrete and pulled
in opposing directions. The only difference
between the simulation depicted in Figure 10 and
that depicted in Figure 11 is that the grid spacing is
refined by a factor of two in the latter figure.

(a) (b) (©)
Figure 10. Magnified deformed shapes of splice of
reinforcing bars in concrete at three stages (coarse
discretization — grid spacing is 0.06 m).

These figures show essentially the same
deformation mechanisms despite the differing
discretization scales, giving some evidence that the
deformation mechanisms are in fact objective, and
independent of the discretization. Furthermore, the
results seem to be reasonable in light of the
authors’ observations of laboratory experiments.



Further development is necessary to determine if in
fact the implementation of the peridynamic model
developed in Emu can yield truly objective results,
with detailed predictive capability.

() (b) (c)
Figure 11. Magnified deformed shapes of splice of
reinforcing bars in concrete at three stages (fine
discretization — grid spacing is 0.03 m).

5 CONCLUSIONS

The peridynamic model provides an alternative
approach to the modeling of reinforced concrete
that avoids any presumption of a continuous
displacement field. Neither the concept of strain
nor the concept of stress is required by this model.

Promising features of the peridynamic model

include:

¢ A simple conceptual model.

e A relatively simple constitutive microelastic
model has the potential to represent cracking,
and damage at the macro scale.

e Bond-slip behavior between the concrete and
the steel reinforcement emerges naturally,
without resorting to any special models.

e Size scaling appears to be uncomplicated.
However, further research is required.

e Very fine grids are unnecessary, unless, of
course, high spatial resolution of the damage is
required. Again, further research is in order.

e Large deformations are naturally modeled; no
assumption of small deformations is required.

There are some disadvantages of the peridynamic

model as well:

e The model does not yield analytical solutions.
Therefore, it is essentially a computational
model.

e For eclastic cases in which no damage is
present, it is probably not as efficient as the
conventional finite element approach

o As the grid is refined spatially, the stable time
step size is also decreased. Thus, the number
of  computations required increases
dramatically with grid refinement. (Of course,
this is also true with any other method of
computational modeling.)

Some research issues to be resolved include:

e Development of microelastic, microplastic,
and rate-sensitive peridynamic models.

e Development of models including dimension
simplification: bars, beams, plates, and shells.

e Development of rigorous convergence
estimates. Can any convergence guarantees be
developed?

¢ Development of efficient solution algorithms.
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