
1 INTRODUCTION 
Concrete is commonly employed in radioactive 
waste disposal, and then, besides carrying the 
mechanical loadings, concrete containment 
structures must also ensure the load-bearing 
capacity over extended periods depending on the 
level of radioactivity. 

Phenomenological approaches can be used to 
describe the chemical behavior of mortar and 
cement paste. In this work, we consider the 
nowadays well known simplified approach of 
calcium leaching, see (Carde et al. 1996; Gerard 
1996; Torrenti et al. 1998; Ulm et al. 1999; Bangert 
et al; 2001) among many other references. 

However, when considering the concrete 
material, the effects of the aggregates must be 
accounted for. Although the mechanism of calcium 
leaching in the microscale has been well 
established, i.e. in the scale of the Elementary 
Representative Volume (ERV), it is practically 
impossible to solve the full equations for the 
complex microscale geometries. 

To overcome these difficulties, the 
heterogeneous concrete media can be treated as an 
equivalent homogeneous one. In this paper, the 

macroscopic equivalent equations are derived by a 
homogenization method based on the well known 
double-scale asymptotic development approach, 
see (Bensoussan et al. 1978; Sanchez-Palencia 
1980; Auriault & Lewandowska 1996). 

The general idea of the homogenization process 
is the shift from the description of the phenomenon 
at the microscale (the ERV scale), where the 
governing equations are given, to the equivalent 
macroscopic boundary problem that provides the 
averaged behavior of the equivalent medium. 

The paper in organized as follows. In the next 
section the calcium leaching problem of mortar and 
cement paste is described, then the homogenization 
method is described in section 3. The numerical 
design within the context of the finite element 
method is described in section 4, and finally, in 
section 5, numerical simulations are compared with 
experimental data. 

2 CALCIUM LEACHING OF CEMENT 
PASTE 

During the last few years, different models have 
been developed to describe the calcium leaching 
process. For cement-based materials (cements 
pastes and mortar), the kinetic of calcium leaching 

Homogenization analysis of calcium leaching in concrete. 
A separation of scales approach 

V.H. Nguyen & B. Nedjar & H. Colina 
LAMI - ENPC/LCPC/Institut Navier, Cité Descartes, Marne-la-vallée Cedex2, France. 

J. M. Torrenti 
IRSN/DIR/Pg, Fontenay-aux-Roses Cedex,France. 

 
 

 

ABSTRACT: We present in this work a modeling of calcium leaching in concrete by taking into account 
the influence of the presence of aggregate. The modeling consists of the derivation of the microscopic 
equation governing the average concentration field in the equivalent medium as well as the determination 
of the macroscopic transport parameters. The homogenization method allows to estimate the diffusion and 
tortuosity tensor to be introduced in the macroscopic formulation of mass conservation law. These 
estimates depend on the morphological parameters of the microstructure which represent the geometry of 
the domain occupied by the phase in which the diffusion process takes places. The problem of numerically 
integrating the equations at hand is addressed within the context of the finite element method. Finally, 
numerical simulations are compared with experimental results on concrete. 

Keywords: calcium leaching, homogenization, periodicity, asymptotic development, concrete. 



is determined from the mass conservation of 
calcium which describes the evolution of the 
amount of calcium in the liquid phase of the 
material. One has the following macroscopic 
balance of the calcium ion mass:  

 ( )( ) ( ) divc c s c D(c) c
t

φ∂    + =   ∂
grad ,       (1) 

where div[.] and grad[.] denote the divergence and 
the gradient operators respectively. c is the calcium 
concentration in liquid phase, s is the calcium 
concentration in solid phase, φ is the porosity in 
material, and ( )D c  denotes the apparent calcium 
ion conductivity. According to (Gérard 1996), this 
simplified approach focuses on the evolution of one 
variable only, namely: the calcium concentration c. 
That is, all the quantities s, φ  and ( )D c  may 
depend on the (state) variable c. As an illustration, 
Figures 1-3 give these dependencies for a mortar 
material. 

 

Figure 1: Chemical equilibrium s(c) for accelerated ammonium 
nitrate calcium leaching in mortar. 

 
Figure 2: Porosity φ  versus the calcium concentration c for 

mortar. 

 

Figure 3:  Apparent conductivity ( )D c versus the calcium 
concentration c in mortar. 

The problem of numerically integrating this 
highly nonlinear problem is treated in numerous 
publications. However, when applied to concrete, 
some difficulties appear because the aggregates 
play a determining role in the calcium leaching 
process (the tortuosity, the heterogeneity, the 
volume fraction effects …). In this work, we 
choose to treat the heterogeneous concrete material 
as an equivalent homogeneous medium at the 
macroscale by using a homogenization method. 

3 HOMOGENIZATION METHOD 
The general idea of the homogenization process is 
the shift from the description of the phenomenon at 
the micro-scale (ERV scale), where the governing 
equations are given, to the equivalent macroscopic 
boundary value problem that provides the averaged 
behavior of the equivalent medium. 

In our case, concrete is considered as a mixture 
of a homogeneous matrix of mortar which leaches, 
and aggregates which dose not leach (silicate based 
aggregates). 

The basic assumption is the existence of an ERV 
of the medium, which is small in comparison with 
the macroscopic volume. In a periodic medium, the 
ERV represents the periodic cell. Let l be its 
characteristic length, and L be a characteristic 
macroscopic length. The separation of scales is 
represented by the small parameter ε defined as the 
ration of the scale of the ERV and the scale of the 
structure. 

1l
L

ε = <<                                 (2) 

 



 
Figure 4:  Concrete structure. Separation of scales. 

 
In this analysis, the concrete is considered as a 

periodic medium (see Fig. 4). In the unit cell Ω,   
Ωm is the matrix of mortar, Ωa is the aggregates 
volume, and Γa is the boundary between the 
aggregates and the matrix. The aggregates are 
assumed to not leach. 

Within the framework of the phenomenological 
approach, the mass balance equation for the 
calcium leaching in Ω can be described by: 

( ) div ( ) in mS c D c c
t

∂  = Ω ∂
grad         (3) 

. ( ) 0 on aD c c = ΓN grad           (4) 

where the div[.] and grad[.] operators are 
expressed relative to the microscopic scale y, and 
where, and in all what follows, we have introduced 
the notation ( )( ) ( )S c c c s cφ= +  (see (1)). N is the 
outward unit vector normal to  Γa. Equation (4) 
reflects the fact that there is no leaching in the 
aggregates (impermeability condition). 

Now the problem can be formulated as follows. 
Supposing that the governing equations of leaching 
are known, determine the macroscopic leaching 
equation and the definition of the macroscopic 
parameters for the equivalent continuous medium. 
 
Normalization 

In the process of homogenization all the 
variables will be normalized with respect to the 
characteristic length l. Following the same idea as 
in (Auriault and Lewandowska 1996), equations (3) 
and (4) give a dimensionless number P which 
provides a measure of the relative influence 

between the transient and the diffusion phenomena 
incorporated in the analysis. It provides the 
condition for the case where homogenization is not 
possible. 

( )

( )
i j

S c
t

P

D c c
X X

∂
∂

=
 ∂ ∂
 ∂   

                    (5) 

According to (Auriault and Lewandowska 1996), 
the case P = O(ε2)  will be adopted here. That is, 
the problem (3)-(4) in the microscopic scale is now 
given by: 

2 ( ) ( ) 0 in m
i j

S c cD c
t y y

ε
 ∂ ∂ ∂

− = Ω 
∂ ∂ ∂  

            (6) 

 ( ) 0 oni a
j

cN D c
y

∂
= Γ

∂
          (7) 

Due to the separation of scales, the calcium 
concentration field c is now function of three 
variables, i.e. c = c(x, y, t). where y is the 
microscopic (fast) space variable, x = εy is the 
macroscopic (slow) space variable and t is the time 
variable. Following the homogenization procedure, 
it is assumed that c(x, y, t) can be presented in the 
form of an asymptotic development given by 

0 1

2 2 3 3

( , , ) ( , , ) ( , , )
( , , ) ( , , ) ...

c t c t c t
c t c t

ε
ε ε

= +

+ + +

x y x y x y
x y x y

     (8) 

Where the component ( ) ( , , )ic tx y are y-periodic 
and the variable x is expressed function of the 
variable y (x = εy). Again, this latter means that the 
microscopic point of view is adopted, and implies 
that the gradient operator becomes:  

( ( ), )c cε
 ∂ ∂ ∂

= + ∂ ∂ ∂ 
x y y

y y x
            (9) 

Similarly, the calcium concentration in the solid 
phase and the apparent calcium conductivity can be 
expressed in forms similar to (8). These can be 
written as: 

0
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0

0 1
2 2

0 1

( )( ) ( )

( ) ...
( )

S cS c S c c
c

S c cc
c c

ε

εε
ε

∂
= +

∂
∂ +

+ +
∂ +

   (10) 
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( )( ) ( )

( ) ...
( )

D cD c D c c
c

D c cc
c c

ε

εε
ε

∂
= +

∂
∂ +

+ +
∂ +

       (11) 

The methodology of the homogenization resides 
in the application of the asymptotic developments 
(8), (10) and (11) into (6) and (7). Comparison of 
the terms of the same power of ε will yield the 
required descriptions in the form of the systems of 
equations to be analyses.   

Comparison of the corresponding terms gives at 
the ε0 order:  

0
0( ) 0 in m

i j

cD c
y y

 ∂ ∂
= Ω 

∂ ∂  
           (12) 

0
0( ) 0 oni a

j

cN D c
y

∂
= Γ

∂
        (13) 

At the ε1 the cell problem takes the form: 

0 0 1
1 0 0

0
0

( ) ( )

( ) 0 in 

i i i i

m
i i

c c cc D c D c
y y x y

cD c
x y

  ∂ ∂ ∂ ∂
+ +  ∂ ∂ ∂ ∂   

 ∂ ∂
+ = Ω ∂ ∂ 

      (14) 

0 1 0 0
0 1

0

( )( )

0 on

i
i i i

a

c c D c cN D c c
x y c y

  ∂ ∂ ∂ ∂
+ +  ∂ ∂ ∂ ∂   

= Γ

   (15) 

And, at the next order ε2 the problem is: 

   
0 0

1 0

0 1
0
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( )
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( )

( ) 0 in 
( )

i i
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i i i

i i

S c cc D c
t x y

c cD c
x x y

c cD c
y x y

D c c cc
y c x y

D c c cc
y c c y

ε
ε

 ∂ ∂ ∂
−  ∂ ∂ ∂ 

  ∂ ∂ ∂
− +   ∂ ∂ ∂   

  ∂ ∂ ∂
− +  ∂ ∂ ∂   

  ∂ ∂ ∂ ∂
− +  ∂ ∂ ∂ ∂   

 ∂ ∂ + ∂
− = ∂ ∂ + ∂ 

mΩ

(16) 

1 2
0

0 0 1
1

0

0 1 0
2

0 1

( )

( )

( ) 0 on
( )

i
i i

i
i i

i a
i

c cN D c
x y

D c c cN c
c x y

D c c cN c
c c y

ε
ε

  ∂ ∂
+  ∂ ∂   

  ∂ ∂ ∂
+ +  ∂ ∂ ∂   

 ∂ + ∂
+ = Γ ∂ + ∂ 

   (17) 

Multiplying equation (12) by c0, integrating over 
the matrix Ωm, and then using the divergence 
theorem together with the periodic boundary 
conditions (13) leads to the following expression 

0 0
0( ) 0

m i i

c cD c d
y yΩ

∂ ∂
Ω =

∂ ∂∫ .                     (18) 

Then, from the positivity of the positive of the 
apparent coefficient of diffusivity 0( ) 0D c ≥ , it is 
concluded that the function c0 depends only on the 
macroscopic scale x, i.e.  

0 0( , ) ( )c c=x y x .                       ( 19) 

Taking into account the result (19), the system 
(14)-(15) reduces then to: 

0 1
0( ) in m

i i i

c cD c
y x y

  ∂ ∂ ∂
+ Ω  ∂ ∂ ∂   

        (20) 

0 1
0( ) 0 oni a

i i

c cN D c
x y

  ∂ ∂
+ = Γ  ∂ ∂   

       (21) 

By linearity, one can show that the calcium 
concentration field satisfying the system (20)-(21) 
is of the form: 

0
1 ( , , ) ( ) ( , )k

k

cc t f t
x

χ ∂
= +

∂
x y y x             (22) 

where χk(y) is y-periodic and χ  = 0. The latter 
condition means that the mean values of χ over 
periodic volume is equal to zero. 

1( ) ( ) 0
m

dχ χ
Ω

= Ω =
Ω ∫y y .            (23) 

In (22), f(x,t) is an arbitrary function of the x-space. 
Substituting (22) into equations (20)-(21), we 
obtain the following local boundary value problem: 



0( ) 0 ink
ik m

i i

D c
y y

χ
δ

  ∂∂
+ = Ω  ∂ ∂   

        (24) 

0( ) 0 onk
i ik a

i

N D c
y
χ

δ
  ∂

+ = Γ  ∂   
        (25) 

This problem gives the vectorial field χ which will 
appear in the definition of the macroscopic 
equivalent diffusion tensor. 

Next, using again the result (19) into the system 
(16)-(17) leads to the following one:  

0 0 1
0

1 2
0

0 0 1
1

0

( ) ( )

( )

( )

0 in 

i i i

i i i

i i i

m

S c c cD c
t x x y

c cD c
y x y

D c c cc
y c x y

  ∂ ∂ ∂ ∂
− +  ∂ ∂ ∂ ∂   

  ∂ ∂ ∂
− +  ∂ ∂ ∂   

  ∂ ∂ ∂ ∂
− +  ∂ ∂ ∂ ∂   
= Ω

          (26) 

1 2
0

0 0 1
1

0

( )

( ) 0 on

i
i i

i a
i i

c cN D c
x y

D c c cN c
c x y

  ∂ ∂
+  ∂ ∂   

  ∂ ∂ ∂
+ + = Γ  ∂ ∂ ∂   

     (27) 

Moreover, the system (26)-(27) can be simplified 
as follows. Integrating (26) over Ωm, use on the 
divergence theorem together with the boundary 
condition (27) and the periodicity over Ω, and 
finally by dividing the result by the measure of Ω, 
leads to: 

0

0 1
0

1 ( )

1 ( ) 0

m

m i i i

S c d
t

c cD c d
x x y

Ω

Ω

∂
Ω

Ω ∂

  ∂ ∂ ∂
− + Ω =  Ω ∂ ∂ ∂   

∫

∫
        (28) 

Now taking again into account the expression (22) 
into (28), the calcium leaching in the equivalent 
macroscopic media is given by: 

0 0
0( ) ( ) 0m

i k

S c cf c
t x x

 ∂ ∂ ∂
− = ∂ ∂ ∂ 

D        (29) 

where, 

             1

m

mf d
Ω

= Ω
Ω ∫                                 (30) 

is the volume fraction of the mortar. And the 
average macroscopic apparent diffusion tensor is 
given by: 

 0 0 01( ) ( ) ( ) k
ik ik

i

c D c D c d
y
χ

τ δ
Ω

  ∂
= = + Ω  Ω ∂   

∫D   (31)                                 

where 

1 k
ik ik

i

d
y
χ

τ δ
Ω

  ∂
= + Ω  Ω ∂   

∫                     (32)                   

are the components of the tortuosity tensor. 
 
Summary: 

In summary, the solution of a problem of 
calcium leaching in concrete should be carried out 
in three steps: (i) First, the local boundary value 
problem (24)-(25) for a periodic cell should be 
solved, giving the vector field χ with components 
χi (i = 1, 2 for a two-dimension problem). (ii) 
Second, the equivalent apparent diffusion tensor 
should then be calculated according to its definition 
(31)-(32). And in (iii), the final step consists of 
resolving the boundary value problem (29) for the 
equivalent medium in the macro-scale, subject to 
the given initial and boundary conditions. 

Steps (i) and (ii) are easy to perform within a 
finite element method framework. Problem (24)-
(25) is linear and is solved once and for all for a 
given periodic cell (the ERV). In step (iii), the 
boundary value problem (29) is highly nonlinear 
(as its counterpart in (1)). In the next section we 
give a description of the algorithm we use to 
numerically solve it in this work. 

4 NUMERICAL ALGORITHM OF 
CALCIUM LEACHING 

After determining the average diffusion (steps (i) 
and (ii) above), the equivalent dissolution-diffusion 
equation (29) is written in weak form as: 

( ) δc. ( ) . cd 0m

S ccf d D c
t

δ
Ω Ω

∂
Ω + Ω =

∂∫ ∫grad τ grad   (33)    

which must hold for all admissible variations δc. 
For simplicity, Dirichlet boundary conditions are 
assumed on the entire boundary ∂Ω of the medium. 

Many strategies have been developed to solve 
this problem. The numerical resolution is based on 
an iterative procedure of the discrete version of 



(33). Typically, this requires a linearization and, 
accordingly, one solves a sequence of successive 
linear problems. However, one can expect severe 
numerical difficulties and use of refined mesh is 
necessary because of the strong nonlinearities 
exhibited by ( )S c  and ( )D c  functions, see (Figs. 
1-3). Other ways to treat this equation are, for 
example, to consider it as a Stefan-like problem as 
in (Ulm et al. 2002), or resolve it via the finite 
volumes method as in (Mainguy et al. 2000). In this 
work instead, and motivated by a recent algorithm 
proposed in (Nedjar 2002) within the context of 
nonlinear heat problems involving phase change, 
we employ a relaxed linearization as this was done 
in (Nedjar at al. 2003) to resolve problem (1). 

4.1 Relaxed linearization.  

The procedure concerns the highly nonlinear 
functions ( )S c  and ( )D c . The key idea proceeds in 
three steps: 

In the first step, use is made of the reciprocal 
forms of the precedent two functions. That is, we 
introduce the functions: 

( ) and ( ),c f S c g D= =               (34) 

which can be easily deduced from ( )S c  and ( )D c , 
respectively. 

In the second step, linearizations of the above 
functions f and g are given by: 

 
( 1) ( ) ( ) ( )

( 1) ( ) ( ) ( )

( ) '( ) ,
( ) '( ) ,

i i i i

i i i i

c f S f S S
c g D g D D

+

+

= + ∆

= + ∆
         (35) 

Where f' and g' are the derivatives of  f and g with 
respect to their argument. The superscripts (i) and 
(i+1) refer to the iteration number.  
The identities (35) are equivalently written as: 

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( )

1 ( ( ( ))
'( )

1 ( ( ( ))
'( )

i i i i
i

i i i i
i

S c c f S
f S

D c c g D
g D

 ∆ = ∆ + − 

 ∆ = ∆ + − 

    (36)         

And in the third step, the latter incrementations 
(36) are relaxed by replacing the quantities 

( )1/ '( )if S  and ( )1/ '( )ig D  by constant quantities µ 
and γ in all the domain and during the whole 
iterative process as: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ( ( ))

( ( ( ))

i i i i

i i i i

S c c f S

D c c g D

µ

γ

 ∆ = ∆ + − 
 ∆ = ∆ + − 

             (37)                                        

The relaxation parameters and must satisfy the 
respective conditions: 

( ) ( )

1 1,
max '( ) max '( )i if S g D

µ γ≤ ≤        (38)                                 

In our numerical examples, we use: 

 ( ) ( )1/ max '( ); 1/ max '( )i if S g Dµ λ= =      (39) 

4.2 Resolution algorithm.  

To solve the problem (33) using the precedent 
algorithmic procedure, we first perform a finite 
difference scheme in time. In this paper, use is 
made of a backward-Euler scheme as follows. 
Consider a typical time subinterval [tn, tn+1], then, 
starting from a known converged state ( , , )n n nc S D  
at time tn, we look for the new state 

1 1 1( , , )n n nc S D+ + +  at time tn+1 by solving: 

1
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∆

∫ ∫

∫

grad τ grad
  (40)                           

where ∆t = tn+1 – tn.  A classical linearization of 
(40) gives: 
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where the residual at iteration is given by: 
( )
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1
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+
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−
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∆

+ Ω

∫

∫ grad τ grad
                      (42)                                 

In (41) and (42), subscripts refer to the time step 
and superscripts refer to the iteration within the 
time step. 

The relaxed linearization of the problem (33) is 
then obtained by replacing the increments (37) into 
the first and second terms of the left hand side of 
(41): 
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(43)            

At the end of each iteration, the updating procedure 
is accomplished as follows: 
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From the finite element point of view, the update 
(44)1 is accomplished at the nodal level while the 
updates (44)2 and (44)2 are performed at the 
integration points.  

5 NUMERICAL VALIDATION 
Within the context of the finite element method. the 
algorithm developed in section 4 has been 
implemented in an enhanced version of the 
CESAR-LCPC finite element software, see 
(Humbert 1989). The first section concerns the 
local problem of homogenization of concrete to 
find the tortuosity tensor, and the second section 
concerns the simulation of a calcium leaching test 
under ammonium nitrate solution. In this latter, the 
simulations are compared with partial experimental 
results obtained on concrete. 

5.1 Local problem 

We consider a unit cell of dimension 50x50 mm 
with the volume fraction of mortar fm=0.6. Two 
morphologies of aggregates are considered: circles 
and triangles. The figures 4 and 5 give the adopted 
aggregate distributions together with, for instance, 
the corresponding χ1 component of the vector field 
χ. 

For the morphology of figure 4, the finite 
element computations give the following tortuosity 
tensor: 

2

2

0.42336 0.5616.10
0.5616.10 0.4334circle

−

−

 
=  

 
τ           (45) 

And for the morphology of figure 5, the 
computations give the following one: 

4

4

0.3208 0.2575.10
0.2575.10 0.3147triagle

−

−

 
=  

 
τ         (46) 

 
 

Figure 4:  First morphology and the corresponding χ1 field. 
 

 
 

Figure 5:  Second morphology and the corresponding χ1 field. 
 

Observe that, on one hand, these tensors are 
almost symmetric. This is because there is not a 
preferred direction of apparent calcium diffusivity. 
Moreover, because the non-diagonal terms are 
small compared to the diagonal ones (see (45) and 
(46)), one can consider a scalar tortuosity factor 
only for our problem. And on the other hand, one 
can observe that the geometries of the aggregates 
play an important role. In fact, while the tortuosity 
is about 0.42 for circular aggregates, it is about 
0.32 for triangular aggregates. That is, the apparent 
conductivity for triangular aggregates is about 25% 
lesser than for circular aggregates. 

5.2 Calcium leaching under ammonium nitrate 
solution  

We consider a cylindrical specimen of concrete of 
external radius R = 110 mm and internal radius r = 
27mm. It is submitted to calcium leaching under 
ammonium nitrate solution. For the numerical 
simulation, we use the morphology of figure 4. 

The boundary conditions consist of zero mass 
fluxes on the top and bottom boundaries, and of 



imposed calcium concentration c = 0 [mol/m3] on 
the rest of the boundary. 

The material data we use for the mortar matrix 
are smoothed versions of the s(c), φ(c) and ( )D c  
curves shown in Figs. 1-3. The concrete apparent 
diffusivity used in (29) is ( )cD c = ( )D c τ .The initial 
condition for the calcium concentration in the 
liquid phase is given by c0(x, t =0) = 2730 mol/m3 
for all x ∈Ω which corresponds to the initial value 
s0(x, t =0) = 7350 mol/m3 for the calcium 
concentration in the solid phase. 

Figures 6 and 7 show the simulated degradation 
depths in concrete compared to the corresponding 
experimental results after 36 and 57 days, 
respectively.  

 
Figure 6:  Degradation depth after 36 days, experimental-
simulation comparison 
 

 
Figure 7: Degradation depth after 57 days, experimental-
simulation comparison 

6 CONCLUSION 
We have presented in this work a two-scale 
approach to describe the chemical degradation in 
concrete materials. Use has been made of the well-

known simplified approach of calcium leaching 
widely employed to model cement-based materials. 

The method described here is based on the two-
scale asymptotic developments. We have shown 
how the macroscopic characteristics of the 
equivalent homogeneous media can be identified. 

The simulations have shown that the 
morphological geometry of the aggregates is very 
important to describe the diffusivity of the calcium 
in the concrete. 
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