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ABSTRACT: This paper describes an approach for the 3-D meso-structural analysis of concrete specimens, 
which extends the previous work within the same group in 2-D. Concrete is represented as a particle array  
(larger aggregates), embedded in a matrix (mortar plus smaller aggregates), all discretized using finite 
elements. Zero-thickness interface elements are inserted along all particle-matrix and selected matrix-
matrix element boundaries, to represent the main potential crack planes. Continuum elements are assumed 
elastic, while the interfaces are equipped with a fracture-based constitutive law to represent cracks. For the 
3-D calculations, major efforts are required for mesh generation, improvement of code efficiency and post-
processing. As the first application example, a simple uniaxial tension specimen is presented which 
reproduces the essential experimental features observed, both at the meso- and overall stress-strain levels. 

1 INTRODUCTION 
 
A numerical approach for the meso-mechanical 
analysis of heterogeneous materials using zero-
thickness join/interface elements with constitutive 
laws based on non-linear fracture mechanics, has 
been developed at ETSECCPB (School of Civil 
Engineering)–UPC in recent years. The results 
obtained for concrete in 2-D successfully  
reproduced experimental behavior under a number 
of load situations, such as uniaxial tension, uniaxial 
compression, biaxial tension/compression, 
Brazilian test, creep, shrinkage, etc. [1,2].   

For all these loading cases, outstanding results 
have been obtained in terms of cracking patterns, 
localization process happening in a “spontaneous” 
manner, average stress-strain specimen curves, 
material failure mechanisms, etc. However, the 
two-dimensional analysis is intrinsically limited. 
There are many loading cases which cannot be 
simulated in 2-D (for instance biaxial loading cases 
which fail out of plane, or triaxial tests), and even 
for those which can, it would be important to 
evaluate the importance of the “three-dimensional 
effect” since, strictly speaking, 2-D calculations 
would correspond to an arrangement of prismatic 
aggregates in the third dimension.   In this paper, 
the on-going work for the 3-D extension of this 

approach is described, together with the first results 
obtained for a uniaxial tension specimen. 
 
2 MESO-STRUCTURAL GEOMETRY, MESH  

     2.1 General 

The approach is based on a polyhedron 
representation of the larger aggregate pieces, which 
are embedded in a matrix phase representing mortar 
plus the smaller aggregates. The polyhedric 
geometry is numerically generated by standard 
Voronoi/Delaunay tesselation from a regular array 
of points which is slightly perturbed [3]. The 
polyhedra are then shrunk to become the aggregate 
particles, and both the particles and the space 
between them (matrix) are meshed with finite 
elements for the analysis. The main peculiarity of 
the approach used is that the continuum elements 
thus obtained are all assumed to behave linear 
elastic. The non-linearity and failure capability of 
the model is achieved by means of zero-thickness 
interface elements equipped with a non-linear 
fracture-based law, which are inserted between all 
particle-matrix interfaces and also along selected 
matrix-matrix inter-element boundaries 
representing the main potential crack patterns. This 
obviously restricts failure planes and mechanisms 
to the planes with interfaces inserted originally in 



the mesh, which in turn places strong requirements 
on the discretization process. 

In 3-D, the development of such mesh generator 
represents significant additional difficulties due to 
the generation process itself, and to the difficulties 
for the graphic representation and verification of 
the resulting meshes.  

The overall generation process may be 
decomposed into two steps: (i) the generation of 
the basic geometry of the composite material, and 
(ii) the process of finite element meshing of that 
geometry. These steps are described in the 
following subsections. 

     2.2  Aggregate arrangement and geometry. 

First, a regular distribution of points is generated in 
space (Fig. 1a). The type of distribution of initial 
points significantly conditions the topology and 
geometry of the resulting Voronoï polyhedra 
[4,5,3]. The most common distributions are the 
Regular Distribution, the BCC (Body Centered 
Cube), and the FCC (Face Centered Cube). 
Although a priori the Regular Distribution could 
seem the simplest arrangement and a good first 
choice, after slight perturbation the resulting 
polyhedrons have the tendency to exhibit some 
very small edges/faces. These tend to zero 
length/area for vanishing distortion of the initial 
arrangement, which is an undesirable feature. Both 
the BCC and FCC are free from this “singular” 
behavior at no distortion, although in general they 
also generate some small edges/faces when 
distortion is introduced. Among them, the BCC 
distribution has been initially adopted in this work, 
due to considerations on the adequacy of the 
resulting geometries for fracture patterns. Once the 
initial distribution of points has been generated, 
their position is perturbed by means of a random 
function. In Fig.1a, an orthogonal projection of a 
regular distribution of points is shown, and also 
their perturbed position in figure 1b. 
 
 
 
 
 
 
 
 
 

(a)            (b) 
Fig. 1. Lateral view along z-axis of seed points in: (a) initial 
regular 3D positions and  (b) randomly perturbed positions. 
 

On the perturbed point arrangement, a mesh of 
Delaunay tetrahedrons is generated following 
Watson/Lawson's algorithm [6]. A result of this 
process is shown in figure 2.  

 
Fig. 2.  Delaunay mesh obtained from the perturbed distribution 
of points in Fig. 2b. 
 
Due to the duality between the Delaunay and 
Voronoï spaces, once the Delaunay mesh is 
finished also the Voronoï polyhedrons may be 
uniquely obtained by connecting the circum-centers 
of the every Delaunay tetrahedron to all its 
neighbors with which it shares a triangular face. In 
a third step, each polyhedron is shrunk by a factor, 
which can be the same or different for each 
polyhedron. In addition, and with the purpose of 
avoiding an excessive alignment of the final 
polyhedrons, their position may be altered by 
means of a small solid-rigid movement. A final 
distribution of 3x3x3 BCC Voronoï polyhedrons is 
shown in Fig. 3, which is represented inside some 
enlarged outer box, for easier spatial visualization. 
   Once the polyhedrons generated, shrunk and 
repositioned, we proceed to fill up the space 
between them with the matrix, as shown in Fig. 4. 
To do this, the following properties of 
Voronoï/Delaunay tesselation are taken into 
account [5]: 
a) The opposite faces between two different 

polyhedrons have the same number of edges 
and they are parallel to each other, hence they 
define a prism with a known number of sides. 

b) The polyhedron edges which were the same 
before shrinking, define a right prism of 
triangular base. 

c) The polyhedron vertices which were the same 
before shrinking, define a tetrahedron. 



 
Fig. 3. Resulting Voronoï polyhedrons for a 3x3x3-aggregate 
example, represented within a enlarged outer box for better 
visualization. 

 
Figure 4. Same geometry as in Fig.3, with the matrix filling  the 
space between shrunk polyhedrons, represented within an 
enlarged outer box for better visualization. 
 
Once the aggregate geometry is fixed, it is 
necessary to modify the specimen boundary so that 
its faces are planes. This part of the generation 
process turns out to be quite important and 
relatively complex. The approach followed consists 
of generating aggregates beyond the specimen 
boundaries and then cutting them along the side 
planes, as shown in Fig.5 for the same aggregate 
geometry of Fig.4 (note that, for easier 
visualization, the outer box size in previous figures 
was larger than the actual specimen size). The 
cutting process modifies the topology of the outer 
polyhedrons, causing in some cases singularities 
such as extremely short edges, surfaces with very 
small angles and excessively flat volumes. These 
undesirable geometric features are corrected later 
on in a process that we call “geometry collapse”. 

 
Fig.5. Initial specimen geometry after boundary “cutting” 
process. 
 
The following step is to insert the interface planes 
along all potential fracture surfaces to be 
considered in the analysis. As it is known, in 
conventional concrete, cracks are initiated mostly 
along the weaker aggregate-mortar interface, and 
then propagate within the mortar itself following 
some path with minimum dissipated energy. At the 
time of meshing into finite elements, zero-thickness 
interface elements will be inserted along all these 
potential fracture surfaces. In order to allow that, 
all those planes need to be included at this stage as 
element subdivisions. Aggregate-mortar boundaries 
are already automatically included in the mesh. 
Matrix-matrix potential fracture surfaces are 
included as additional subdivisions of the initial 
matrix blocks, according to the following criteria: 
a) New subdivisions along planes that are defined 

by two parallel edges belonging to two 
opposite polyhedron faces. 

b) New subdivisions along planes that are defined 
by means of each polyhedron edge and a point 
located in the center of the space between two 
polyhedrons facing each other. 

 
This subdivision may produce new “chip” or 
excessively distorted elements, which in general are 
also corrected with the “geometry collapse” step. 
During this step, some points may be slightly 
repositioned or two or more points collapsed into a 
single point. If performed directly on the 
polyhedric geometry of Fig.5, this could cause 
some polyhedron faces to cease being planes, or 
some polyhedrons to undergo a partial volume loss. 
To avoid these situations the whole geometry is 
first subdivided into tetrahedrons, so that all faces 
are composed of triangles before the geometry 
collapse process is applied. In Fig. 6, the geometry 



was obtained after inserting the potential fracture 
surfaces, subdividing into tetrahedrons and 
applying the collapse process, to the same example 
of Figs. 4, 5 and 6. Obviously, the final result 
depends on the allowed tolerances; in this case all 
the edges with smaller sizes than 20% of the 
average edge length have been eliminated. 

 
Fig. 6. Final specimen geometry after potential fracture plane 
insertion, tetrahedron subdivision and collapse process. 

2.3 FE discretization. 

Since at this stage the geometry is already 
subdivided in tetrahedrons, the simplest 
discretization may be obtained by simply turning 
each tetrahedron into a finite element. However, 
this in general leads to meshes which are too coarse 
for the analysis, and therefore a further mesh 
refinement is needed. For this purpose, two 
procedures have been devised. The first of them, 
already implemented, is based on structured 
meshing techniques and simply consists of 
subdividing each tetrahedron edge into a given 
number of segments, and the subsequent 
subdivision of element sides and volumes. A 
second more sophisticated unstructured meshing 
technique based on advancing front which would 
ensure more regular sizes and shapes of the 
resulting   mesh, is under development.  
   Once the specimen discretization in continuum 
elements is completed, the interface elements need 
to be introduced along all potential fracture 
surfaces. This process consists basically on an 
orderly duplication of the nodes and subsequent 
changes in element nodal connectivities. This 
process increases the number of nodes considerably 
while the number of continuum elements remains 
unchanged. 
 

3 INTERFACE CONSTITUTIVE LAW 
 
The 3D constitutive law is an extension of the 2D 
formulation used in previous works [7,8,9,10]. In a 
local ortogonal reference system, the behavior of 
the joints is formulated in terms of one normal and 
two tangential traction components on the plane of 
the joint, σ = [σN, σT1, σT2]t and the corresponding 
relative displacements u = [uN, uT1, uT2]t, as shown  
in figure 7.  
 
 
 
 
 
 
 
 
Figure 7. Definition of stress variables and conjugate “strain” 
variables (relative displacements) for the interface. 
 
The constitutive formulation conforms to work-
softening elasto-plasticity, in which plastic relative 
displacements can be identified with crack 
openings. The initial loading (failure) surface F = 0 
is given as three-parameter hyperboloid (tensile 
strength χ, asymptotic “cohesion” c, and asymptotic 
friction angle tanφ. When cracking starts, the 
loading surface begins to shrink. This is achieved 
by means of softening laws in which the surface 
parameters are functions of the work consumed in 
fracture processes, Wcr. To control the process of 
evolution of F, the model has two parameters that 
represent the classic energy of fracture in Mode I, 
GF

I (pure tension) and a second energy under 
“Mode IIa” defined under shear and high 
compression without dilatancy, GF

IIa, with values 
generally higher than its mode I counterpart. Under 
pure tension the loading surface shrinks and moves 
to become another hyperboloid with vertex at the 
coordinate origin. Under mixed-mode, it 
degenerates further, asymptotically becoming a 
cone that represents the residual friction after all 
roughness of the crack surface has been eliminated. 
The model is associated in tension F = Q. In 
compression, behavior is non-associated, with a 
reduction of dilatancy which is higher with the 
compression level and with the evolution of joint 
degradation measured by apparent cohesion c. 
More details of the interface law and examples of 
application to simple loading cases in 2-D can be 
found in [8,9,1].  
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Fig. 8.  FE mesh used in application example: (a) external view, (b) aggregates only and (c) partial view of the mesh showing clearly 
the central aggregate in specimen . 
 
4 COMPUTATIONAL ASPECTS AND 

PRELIMARY RESULTS 
 
Moving from 2D to 3D calculations represents a 
very serious computational challenge because of 
the dramatic increase of the resources needed at 
every step of the process. In particular, the number 
of degrees of freedom involved, which in a typical 
2D calculation with 6x6 aggregates including 
interfaces was in the order of a few thousands, 
easily reaches a hundred thousand with the 3x3x3 
aggregate meshes represented in figures 3-6. And 
the computational time increases quadratically with 
the number of d.o.fs. 
   This is why the specimen considered for the 
preliminary calculations presented in this section is 
the simplest possible which could be still 
considered in a broad sense representative of the 
overall concrete behavior. As shown in Fig. 8, this 
specimen contains nine aggregates, eight in its 
corners, and one in the center. Even if very simple, 
the resulting mesh with interfaces has 32406 d.o.fs, 
with 3133 tetrahedrons and 5187 interface 
elements. Still, the computer code DRAC used for 
these calculations, has required a number of 
improvements including a new iterative solver 
which is much more efficient for large systems. 
With these improvements, a single elastic solution 
of the 9-aggregate example takes 12.5 seconds on a 
PC machine equipped with a P4 1.8GHz processor, 
1Gb RAM and running under Windows XP. 
     The material parameters used are: E = 70000 
MPa(aggregate), E = 25000 MPa(mortar) and ν = 
0.20(both) for the continuum elements; for the 
aggregate-mortar interfaces: KN = KT = 109 
MPa/m,    tangφ0 =  tangφr = 0.8, tensile strength χ0 
= 3 MPa, c0 = 10.0 MPa,     Gf

I = 0.03 N/mm, Gf
IIa 

= 10 Gf
I, σdil = 7 MPa, and all other parameters 

equal to zero; for the mortar-mortar interfaces the 

same parameters except for  χ0 = 6 MPa, c0 = 20.0 
MPa, Gf

I = 0.06 N/mm. 
      A prescribed tensile displacement is applied to 
the upper side of the specimen, while the lower side 
is fixed vertically. Lateral displacements are left 
free, except for two nodes at the base of specimen 
to prevent rigid-body motion/rotation. The resulting 
average stress-strain curve is represented in Fig. 9, 
in which average strain is calculated as the 
prescribed displacement divided by specimen 
length, and average strain as the sum of reactions 
(on either upper or lower specimen sides), divided 
by the side area surface. 
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Fig.9. Average stress-strain curve for application example, with 
loading states A,B,C,D indicated for reference in Fig. 10. 
 
 The sequence of cracking and deformed mesh  
states for loading states A,B,C,D indicated in Fig. 9,  
are represented in Fig. 10.
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D) 

Figure 10. History parameter Wcr /GF
I on craked interfaces wich are opening (left column), closing (center column) and deformed 

shape of specimen, at loading states A, B, C and D. 
 



The four images in the right vertical column of 
Fig.10 represent the deformed shape of the 
specimen at loading stages A, B, C and D in the 
stress-strain diagram of Fig. 9. The images in the 
left and center columns of the figure depict the 
interfaces which have exceeded the initial strength 
and therefore have started to open, with different 
color intensities depending on the amount of 
energy dissipated in fracture, Wcr. Among them, 
the left column includes those interfaces which are 
opening (“plastic loading” state in the constitutive 
equation), while the central column includes those 
which are arrested (“elastic unloading”).  
      In the figure, it can be clearly seen that initially 
(loading stage A) cracked interfaces are spread 
more or less uniformly over the specimen and are 
practically all in “loading” state. Progressively 
(rows B and C), fracture advances faster in some 
interfaces, while more and more other interfaces 
start unloading. Finally (row D), practically only 
one single surface remains active, which represents 
the final macrocrack splitting the specimen in two 
pieces just above the four lower aggregates, while 
all the other cracks are arrested. Note especially the 
competing crack which develops until load stage C 
just below the upper corner aggregate in the front 
of the image, which finally also arrests at stage D. 
Note also the complexity of crack patterns which 
emerge from this simple geometry, with profuse 
spatial bridging and branching until the final failure 
mechanisms are defined.       
 
 
5 CONCLUDING REMARKS 
 
The approach for concrete fracture using interface 
elements previously developed in 2-D, is being 
successfully extended to 3-D. This extension is 
requiring an important effort for improving 
efficiency of the pre-processing, analysis and post-
processing tools. The first case analyzed which is 
described in this paper, represents the simplest 
meso-geometry with 9 aggregates and also the 
simplest loading situation –uniaxial tension. In 
spite of that, a realistic representation of the stress-
strain curve and of the crack patterns and evolution 
are obtained. In particular, it is reassuring to see 
how the localization process takes place 
spontaneously, leading from initially distributed 
micro-cracking to a single macro-crack which 
crosses the specimen perpendicular to the applied 
load. Current work aims at the analysis of more 
representative geometries with larger number of 

aggregates, subject to uniaxial tension and 
compression, as well as more complex loading 
situations, all of which is linked to on-going 
parallel developments on the corresponding 
computational tools. 
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