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ABSTRACT: The parameter identification problem of the gradient-enhanced continuum damage model is
solved using tools of the inverse problems theory. Particularly, the K-Nearest Neighbors (KNN) technique and
the Kalman Filter (KF) method are adopted in cascade to identify the length scale parameter and the parameter
governing the softening branch of the material constitutive law. Two experimental data series are used, concern-
ing different sizes and loading conditions, in order to investigate the influence of the involved experimental data
in the parameter estimates and the predictive capabilities of the considered model. The inverse problem results
to be ill-posed if only force-deformation data are used in the parameter identification procedure. Additional
data related to the evolution of the width of the damaged zone during the fracture process are adopted in order
to recover the well-posedness of the inverse problem.

1 INTRODUCTION

In the last three decades there has been an increasing
interest in the study of the tensile behavior of con-
crete or, more generally, of quasi-brittle materials, in
order to numerically simulate the strain localization
process responsible for macroscopic fracture phe-
nomena. However, the different computational mod-
els developed for this purpose contain some model
parameters (constants) that cannot be directly mea-
sured during laboratory tests. For those model pa-
rameters the solution of an inverse problem is re-
quired, which can provide the parameter estimates by
minimizing, iteratively, the discrepancy between ex-
perimental and computational data. This is the case,
for instance, for the length scale parameter and the
slope of the softening branch of the material consti-
tutive law of the gradient-enhanced continuum dam-
age model, on which the present paper focuses. Dif-
ferent issues of the parameter identification procedure
are investigated, as for instance the well-posedness
of the inverse problem and the predictive capabilities
of the calibrated model in terms of size and geome-
try effects. For this purpose, the K-Nearest Neighbors
(KNN) technique associated with the Kalman Filter
(KF) method is adopted. Experimental data from uni-
axial tensile tests and three point bending tests of dif-
ferent specimen sizes are used.

2 COMPUTATIONAL MODEL

The adopted computational model (for a complete
treatment see Peerlings (1999)) is based on the

isotropic continuum damage formulation of Lemaitre
and Chaboche (1990), containing a damage scalar
variable ω responsible for the degradation of the elas-
tic properties of the material according to the follow-
ing classical stress-strain relation

σ = (1− ω)Del
ε (1)

in which D
el is the matrix of the undamaged (ω = 0)

elastic stiffness moduli. The damage process is driven
by the modified von Mises definition of the equiva-
lent strain εeq (Vree et al. 1995), that after reaching a
certain strain threshold triggers the damage evolution
according to an exponential softening damage evolu-
tion law. The model is regularized through the intro-
duction of a nonlocal equivalent strain ε̄eq(x) as an
average quantity of the local counterpart εeq(x) on a
certain radius of the material point that is governed by
a model parameter l, referred to as the length scale.
Hence, the following diffusion equation (implicit gra-
dient formulation) is added to the material constitu-
tive laws

ε̄eq − c∇2ε̄eq = εeq (2)

where c is the so-called gradient parameter, which can
be related to the length scale parameter (c = l2/2).
The described model contains seven model param-
eters to be identified (Iacono et al. 2006a): Young’s
modulus, Poisson’s ratio, the tensile and compressive
strengths of the material, the gradient parameter c and
two parameters β and α governing, respectively, the
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negative slope and the tail of the softening branch
of the material constitutive law. For computing time
reasons, the parameters identification procedure pre-
sented in this paper focuses on c and β, considering
the remaining parameters as a priori known.

3 INVERSE PROBLEM

Solving the forward problem means to find analytical
or numerical solutions for the ordinary or partial dif-
ferential equations of the model, with known initial
and boundary conditions and constants (or parame-
ters) in the equations. On the contrary, in the inverse
problem the solution is known and the objective is to
determine the complete forward problem for which
that solution is possible.

3.1 Inverse problems in experimental-numerical re-
search

Once a numerical model can provide qualitatively ac-
ceptable output, in comparison with the real responses
of the described system, a rigorous estimation of the
model parameters is needed, in order to reproduce
quantitatively correct output.

Let S be the real mechanical system represented by
a numerical model containing model parameters as-
sembled in a vector x. If a perturbation is applied on
S, the system reacts giving a certain response repre-
sentable by a certain number of quantities measured
at different ‘instants’ t and collected in a y

t
exp vector.

On the other hand, the numerical model of the sys-
tem, given the model parameter vector x, is able to
compute the solution of the forward problem y

t
comp, as

the corresponding computational counterpart of y
t
exp.

The correct estimate of the model parameters vector
x may be obtained using inverse techniques, which,
starting from an initial guess of the model parameters
x0, minimize a function f(x) (objective function) of
the discrepancy between y

t
exp and y

t
comp

f(x) = (yt
exp − y

t
comp(x),x0) (3)

This calibration phase of the model development
represents a first check for the model. In fact, for in-
stance, the solution of the inverse problem might not
exist or it might be unstable. The identification of the
sources of error may require a significant effort, since
causes of ill-posedness might not only be found in the
model, but also in the type of experimental data used
for the calibration (quality, quantity and type of data)
or in the adopted inverse method (for instance, local
search techniques might stick into local minima of the
objective function).

Hence, the inverse analysis might reveal limits in
the basic assumptions of the model. A ‘proof ab ab-
surdo’ of the model can be provided by the inverse
analysis: starting from the hypothesis that the way

the model describes the physical process is correct,
possible flaws might be found, that lead to re-discuss
the hypotheses, which give input for model improve-
ments.

However, for a rigorous model assessment vari-
ous real situations needed to be considered, differ-
ent from the one(s) used for the model calibration.
Forward problems are solved and comparisons be-
tween the experimental and computational responses
are performed. Hence, limits related to the predictive
capacities and to the applicability of the model can be
provided, in order to have a model as a valid tool for
design, monitoring, and prediction problems.

If, on one hand, experimental data may be used for
qualitative and quantitative updating of the numerical
model, on the other hand, the numerical model may be
a useful tool for the optimal experiment design (sev-
eral criteria and methods are available (Emery and
Nenarokomov 1998)). For instance, numerical sim-
ulations may lead to optimal choices for measure-
ment set-up, regarding, for instance, number of sen-
sors, their location, geometry and size of the spec-
imen, boundary and loading conditions, duration of
the experiment, etc. Hence, the continuous integration
and interaction of model building with experimental
testing allows not only the complete understanding of
a real phenomenon, but also significant improvement
of both experiments and numerical modelling. Within
this framework, the Inverse Problems Theory can pro-
vide the tools to connect experimental and computa-
tional research.

3.2 Inverse techniques

The choice of the inverse technique is fundamental.
More inverse techniques may be used, for instance
in cascade, in order to optimize effectiveness (how
close the estimation is to the exact solution), efficiency
(time saving) and robustness (reliability or repeatabil-
ity of the solution) of the method.

In the present work, two inverse techniques, briefly
described below, are used in cascade, with different
features, so that a compromise of local-global search
tool is obtained: the K-Nearest Neighbors (KNN)
method and the Kalman filter (KF) method.

The basic notions of their mathematical formula-
tion are presented in Iacono et al. (2003), (2006a),
while detailed treatments can be found in e.g. Kailath
et al. (2000), Tarantola (1987), Bittanti et al. (1984),
Catlin (1989), Bui (1994), Powell (1998). Here, it suf-
fices to mention that, since the final solution may be
strongly influenced by the starting point of the search
process, the KNN method is proposed for a first pre-
liminary study of the parameters space. In this way,
possible ill-posedness of the inverse problem may be
easily detected and promising search regions may be
localized, speeding up the convergence of the inverse
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procedure and avoiding model parameter estimates
representing local minima of the objective function.
The KNN method is also suggested when a rough tun-
ing of a model is required, because it may be easily
handled (derivative free method) and implemented for
any computational model (without changing the for-
ward problem code, but as an external tool) and also
by users that are not familiar with the inverse problem
theory.

Successively, using the so-identified parameters
vector as initial guess, the KF method is adopted in
order to refine the inverse solution. The KF method
takes into account also the uncertainties related to the
experimental data and to the parameter estimates, of-
fering also the advantage of a subsequent parameter
update during the fracture process.

4 EXPERIMENTAL DATA

Two experimental data series, reported below, are
used in the present paper.

4.1 Series no. 1

The series no. 1 is represented by tensile size ef-
fect tests on concrete dog-bone shaped specimens car-
ried out in the Stevin laboratory of Delft University
of Technology (van Vliet 2000), (van Vliet and van
Mier 2000). The available experimental data are the
global load-displacement curves for the various spec-
imen sizes.

4.2 Series no. 2

This series consists of double-edge notched uniaxial
tensile tests and single-edge notched bending tests on
specimens made of the same concrete (Hariri 2000),
(Hariri 2001). In this case, besides conventional mea-
surement techniques such as using LVDTs, in-plane
Electronic Speckle Pattern Interferometry (ESPI) is
used leading to whole field displacements and strain
distributions along the main sensitivity direction per-
pendicular to the notches. Hence, the available exper-
imental data consist of global data (force vs. defor-
mation curves) and local data (width of the fracture
process zone vs. deformation curves) for the different
specimen sizes and geometries (see Section 7). This
data series allows a relevant investigation of four es-
sential aspects: i) which kind of experimental data is
necessary for the identifiability of the model param-
eters and the well-posedness of the inverse problem
(local/global data), ii) how the estimated parameters
are influenced by the experimental data involved in
the inverse problem iii) the assessment of the relia-
bility of the model predictions, in terms of loading
conditions and size effects.

5 UNIQUENESS OF THE INVERSE SOLUTION

If only the force-deformation curve (global data) is
considered and an approximation of the objective
function of Eq. (3) is built, using the KNN method, a
saddle shaped surface appears. This is shown in Fig-
ure 1a, for instance, in case of the dog-bone spec-
imen type C of the experimental series no. 1. This
means that the two model parameters β and c are
correlated. The inverse problem is ill-posed, since no
unique and/or stable solution is guaranteed. Hence,
different parameter sets correspond to similar global
force-deformation curves (Iacono et al. 2006a).

The well-posedness of the inverse problem is not
recovered when the global data of different specimen
sizes are considered, as shown in Figure 1b, being the
coupling between the parameters c and β of a similar
type for all sizes (Iacono et al. 2004), (Iacono et al.
2006a).

6 SIZE EFFECT

The gradient-enhanced damage model seems to in-
correctly reproduce the entire experimental size effect
curve, using only one parameters set for all specimen
sizes: the computational size effect curve remains too
flat compared to the experimental one (Iacono et al.
2006b). By using a single parameter set for all spec-
imen sizes and involving only global data, only an
unstable average fitting of the size effect curve can
be reached. In other words, different parameter sets
can be found which correspond to slightly different
computational size effect curves, representing an av-
erage fitting of the experimental curve. This is shown
in Figure 2a for the case of the bending tests of the ex-
perimental series no. 2 (where the considered param-
eter set belongs to the saddle of the objective function
f(x)).

A better fit may be achieved considering a fixed
value of β = 500 and different values of the gradient
parameter c, as shown in Figures 2b and 3.

7 FPZ WIDTH

The width of the fracture process zone (FPZ), avail-
able in the experimental series no. 2, is used as ad-
ditional information in order to solve the correlation
between the two model parameters c and β.

However, the main difficulty is to establish a crite-
rion in order to define the FPZ width d from a strain
distribution. Experimentally, the use of in-plane Elec-
tronic Speckle Pattern Interferometry (ESPI) in the
experimental series no. 2 provides whole field dis-
placements and strain distributions along the main
sensitivity direction perpendicular to the notches.
Hence, the FPZ width is defined as the width of
the area where the strain exceeds a certain threshold
value, defined relatively to the peak value (in this case
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Figure 1. (a) Objective function fα=0.93(β, c) for the type C dog-bone shaped specimen. (b) Force deformation curves
for all dog-bone specimen sizes (A to E) for two equivalent parameter sets, set1=[c = 50 mm2 β = 1200] and set2=[c =
20 mm2 β = 800] (α = 0.93).
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Figure 2. (a)Experimental and computational size effect curves for the single-edge notched bending specimens (BG1 to
BG5 size) of the experimental series no. 2 (Hariri 2000), (Hariri 2001) (α = 0.92) (b) corresponding computational size
effect curve. The stress-CMOD curves related to these parameter sets are shown in Figure 3 (α = 0.92).

20%). Widths of the FPZ are recorded during the en-
tire fracture process, so that FPZ width vs. deforma-
tion curves are available for the experimental series
no. 2.

Numerically, at each time step t, the nonlocal
equivalent strain profile along the beam mid-height
axis may be considered (alternatively, the damage
profile or the local equivalent strain profile might be
used). Hence, analogously to the experimental case,
the computational value dt

comp(x) may be defined as
the width of the area where the nonlocal strain ε̄eq is
larger than a certain fixed percentage (the same used
during the experiments) of the peak value (see Figure
4).

It could be argued that this way of determining the
FPZ width is arbitrary and debatable and that the final
estimate of the model parameters vector is influenced
by both the experimental technique adopted for the
measurement of dexp and the method and threshold
value used for the definition of the numerical corre-
sponding value dcomp. However, the essential aspect
and requirement is that all coefficients, assumptions,

and procedures used for the calibration of the nu-
merical model are kept constant and consistent for
all specimens sizes and loading conditions, so that
the predictive capacity of the model may be assessed.
Therefore, the strain threshold value used for the def-
inition of the FPZ width, which should be consistent
with the experimental data, may be seen as a tuning
parameter of the so-calibrated model.

Hence, the width of the damaged area d may be in-
cluded in the definition of the objective function f(x)
(Iacono et al. 2006a), according to

f(x) =
n∑

j=1

p1f1 sizej +
n∑

j=1

p2f2 sizej, (4)

where f1 sizej and f2 sizej are the global and local
contribution, respectively, related to the specimen size
j. In Eq. (4), p1 and p2 are two weight factors with
which the two contributions, global and local data, are
taken into account (guidelines for the choice of their
values are suggested in Iacono et al. (2006a)).

Hence, if only the global data or only the local data
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