
1 INTRODUCTION 

“Size effect” in concrete fracture has been a hotly-
debated topic for nearly half a century because of its 
important implications to the applications of fracture 
mechanics to concrete structures. Since Kaplan re-
ported the dependence of fracture toughness on 
beam depth in 1961 (Kaplan 1961), extensive ex-
perimental observations on the size dependence of 
fracture behaviours have been documented. The 
main size dependent behaviours include (1) the frac-
ture energy of concrete specimens increases with in-
creasing ligament, (2) the fracture strength of non-
geometrically similar specimens increases with de-
creasing ligament and/or crack length, and (3) the 
strength of geometrically similar specimens de-
creases with increasing specimen size (Higgins & 
Bailey 1976, Nallathambi et al. 1985, Hashida & 
Takahashi 1985, Shinohara et al. 1991, Karihaloo et 
al 2003). This size dependence of fracture dimin-
ishes and the fracture parameters become material 
constants when the corresponding dimension is very 
“large”.  Therefore, the size-independent fracture pa-
rameters required for the structural integrity analysis 
of concrete structures can only directly be measured 
on “huge” fracture mechanics specimens, which are 
often impractical for many laboratories. 

Alternatively, these size-independent fracture 
properties can be extrapolated from the size-
dependent fracture data measured on the laboratory-
sized specimens. This requires an appropriate frac-

ture mechanics model relating the specimen size and 
geometry to the fracture behaviours. Over the past 
three decades, a number of fracture mechanics mod-
els have been developed including the ficticious 
crack model (Hillerborg et al 1976) and two-
parameter model (Jenq & Shah 1985) for the liga-
ment-dependent fracture energy, and a few “size ef-
fect” models (Bažant 1984, Carpinteri et al 1995, 
Karihaloo 1999), which consider the relationship be-
tween the strength and size of geometrically similar 
specimens. These models have been used to analyse 
the fracture behaviours of concrete specimens and to 
predict the size-independent fracture parameters. 

The authors have recently developed the bound-
ary effect concept and two fracture mechanics mod-
els to characterize the size dependent fracture prop-
erties (Hu & Duan 2002, Duan & Hu 2002, 2004, 
Duan et al. 2002, 2003a,b, 2004, 2006). The bound-
ary effect concept explains the size dependence of 
the fracture energy and strength as a result due to the 
interactions between the specimen boundaries and 
crack tip fracture process zone (FPZ). When the 
crack tip is close to a specimen boundary, the speci-
men boundary will limit the development of the 
FPZ, and therefore, lead to a reduced fracture en-
ergy. Meanwhile, a fracture mechanics specimen 
with either a short crack or ligament will fracture in 
a more “ductile” manner. The “ductile” failure is 
controlled by the maximum tensile stress. When the 
maximum tensile stress reaches the material tensile 
strength ft, the specimen fails. On other hand, when 
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the FPZ is far away from specimen boundaries, the 
specimen strength is determined by the linear elastic 
fracture mechanics (LEFM) criterion. 

This paper aims to explain the asymptotic bound-
ary effect model. For this purpose, the influence of 
the specimen boundaries on concrete fracture is 
firstly analysed by considering the role of the 
boundaries in dominating the failure mode. Then, 
three sets of fracture testing data available in the lit-
erature are analysed using the asymptotic boundary 
effect model. It will be shown that the predictions 
from the asymptotic model agree very well with 
those measured data, and the implications behind 
this agreement are discussed. 

2 BOUNDARY EFFECT CONCEPT AND 
ASYMPTOTIC MODEL FOR FRACTURE 
STRENGTH OF CONCRETE 

The boundary effect concept is explained in Figure 1 
where a finite-sized plate with a single edge crack is 
subjected to a remote applied load. Depending on 
the closeness of the crack tip FPZ to either bound-
ary, the strength of the plate can be determined by 
either the material tensile strength ft or fracture 
toughness KIC. When the crack tip is close to the 
front boundary (short crack) as shown in Figure 1a, 
the crack will be shielded before specimen failure, 
and therefore, the plate strength is determined by the 
maximum tensile stress condition (ft). On the other 
hand, when the FPZ is close to the back boundary 
(short ligament, Fig. 1c), the ligament will “yield” 
prior to the final fracture, the failure of the plate is 
again controlled by ft. Only when the crack tip lo-
cates in the middle of the plate where it is far away 
from both boundaries, is the plate strength decided 
by the LEFM criterion (Fig. 1b). 

 
 
Figure 1. The dependence of failure mode on the crack-tip-to-
boundary distance: (a) a short crack is likely shielded before 
specimen failure; (b) crack tip is far away from both bounda-
ries, and the LEFM dominates failure; and (c) a short ligament 
“yields” before final failure 

 

Recently, an asymptotic boundary effect model 
has been developed to describe the afore-discussed 
relationship between the distance of the crack tip 
FPZ to specimen boundaries and the strength behav-
iours of fracture mechanics specimens (Duan & Hu 
2002, 2004, Duan et al. 2006). This asymptotic solu-
tion for finite-sized specimens is based on the 
equivalent relationship between finite-sized speci-
mens and a large plate with a small edge crack, and 
includes the σf-condition as asymptote for short 
crack or ligament and KIC-criterion for a specimen 
with the crack tip away from boundaries. 

The large plate case can be obtained when the 
specimen width W >> crack size a in Figure 1, i.e. 
the ratio of the crack length a over the plate width W 
is equal to zero (α = a/W = 0), and as a result, only 
specimen front boundary will influence specimen 
strength. The asymptotic solution for the simple 
large plate case was proposed by Hu and Wittmann 
(Hu & Wittmann 2000), and is given by: 

*1 ∞+
=

aa

ft
nσ  (1) 

in which, the reference crack a*
∞ represents the 

crack length where the two asymptotic limits inter-
sects, and is given by: 

2

2
*

12.1
1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=∞

t

IC

f
K

a
π

 (2) 

From Equation 1, the maximum tensile stress theory 
is obtained when a << a*

∞, and the LEFM criterion 
is recovered when a >> a*

∞. 
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The asymptotic solution, Equation 1 can be ex-
tended to a finite-sized specimen by establishing the 
equivalent relationship between the finite-sized 
specimen and the large plate. This can be achieved 
by comparing the ft and KIC criteria for the finite-
sized specimen to those for the large plate as given 
in Equation 3. For this purpose, two nominal 
strengths, σn and σN can be defined for a fracture 
mechanics specimen. As shown in Figure 2, the 
nominal strength σN is based on the gross cross-
section, and describes the failure stress of the speci-
men without considering the presence of the crack 
while the σn represents the net cross-section based 
failure stress without considering the stress concen-
tration and singularity associated with the crack. 
These two nominal strengths are related each other 
by: 
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where Α(α) reflects the influence of specimen ge-
ometry through its dependence on the  ratio of the 
crack length a over characteristic size W (α = a/W), 
and can be estimated through a mechanics analysis. 
For example, the Α(α) functions for the fracture me-
chanics geometries given in Figure 2 are derived as: 
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Obviously, Α(α) is always lower than unity be-
cause σn is always higher than σN. Using the nomi-
nal strengths defined in Figure 2, the maximum ten-
sile stress theory for a finite-sized specimen remains 
same as Equation 3a, and the LEFM criterion is 
given by: 

( ) aYK NIC πσα ⋅=  (6) 

in which Y(α) is a geometrical factor that can be 
found in many fracture mechanics texts and hand-
books (e.g. Tada et al. 2000). For the convenience of 
further analysis, the Y(α) expressions for the three 
geometries shown in Figure 2 are listed as follow: 
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Combining Equations 2, 4 and 6, the LEFM crite-

rion is re-written as: 
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It can be seen clearly that Equation 8 can be 
transformed to Equation 3b if ae is replaced by a. 
Therefore, the strength behaviour of a finite-sized 
specimen is in fact, an equivalence of a large plate 

with a small edge crack ae, and can be characterized 
by an asymptotic equation similar to Equation 1. 
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It is interesting to note here that for both the 
SENT and 3PB specimens where Y(α) factors given 
in Equation 7 apply to α  0, W >> a will lead to Y 
= 1.12, Α(α) = 1 and σn = σN. From Equation 9, one 
can get that ae = a, and as a result, the asymptotic 
solution given in Equation 1 for the large plate case 
is recovered from Equation 10. 

Re-arranging Equation 10, the linear form of the 
asymptotic model, which is often preferred for the 
analysis of experimental data, is given as: 

*222

111

∞

⋅+=
a
a

ff
e

ttnσ
 (11) 

3 STRENGTH BEHAVIOURS OF FRACTURE 
MECHANICS SPECIMENS DUE TO 
BOUNDARY EFFECTS 

3.1 Crack and ligament dependence of strength 
resulting from boundary effects 

Boundary influence on the strength behaviours of 
fracture mechanics specimens is reflected in the ae 
variations with the crack and ligament lengths 
through its equivalent relationship to the crack 
length in the large plate. The relationship between 
the equivalent crack ae and α-ratio for SENT speci-
mens is shown in Figure 3a where it can be seen that 
ae reduces dramatically when α approaches either 0 
or 1, and peaks when α is around 0.2. The maximum 
ae is dependent on specimen size because of the 
limitation of the specimen size on the crack tip loca-
tion. Corresponding to ae variation as shown in Fig-
ure 3a, the nominal strength σn will approach to the 
maximum strength σf at both the front (α = 0) and 
back boundaries (α = 1), and is equal to the mini-
mum strength at the maximum ae (Fig. 3b). Depend-
ing on the specimen size W, the minimum strength 
can be determined by σf and/or KIC criteria. 

Shown in Figure 3c are the plots of the nominal 
strength σn versus the equivalent crack length ae of 
both finite-sized SENT specimens and the large 
plate in the system of Ln σn versus Ln ae. It is 
clearly shown that the strength of the large plate is 
bounded by the two asymptotic criteria, σf and KIC 
criteria. For a short crack, i.e. the crack tip is close 
to the only boundary, σn is controlled by the maxi-
mum tensile stress theory, and for a long crack, i.e. 
the crack tip is far away from the front boundary, the 
LEFM criterion dominates the fracture of the large 
plate. In the quasi-brittle region, the gradual transi-



tion curve joins the asymptotes, σf theory and the 
KIC criterion. 

The σn-ae curves of the finite-sized SENT speci-
mens follow the strength curve of the large plate to 
the maximum ae, and then turn back towards the as-
ymptote of σf. The levels of the maximum ae and 
therefore, the minimum σn are dependent on the 
specimen characteristic size W because of its physi-
cal limitation. 

 
Figure 2. Specimen geometries for fracture mechanics study: 
(a) single-edge-notched tensile (SENT) specimen; (b) compact 
tension (CT) specimen; and (c) 3-point-bend (3PB) specimen. 

3.2 A special case of boundary effect: Size effect in 
the strength of geometrically similar specimens 

An interesting case in the size effect study is the 
geometrically similar specimens when the α-ratio is 
kept constant. As a result, the failure mode and 
strength of these specimens vary only with the 
specimen size. The previous “size effect” models in-
cluding the size effect law (SEL) consider primarily 
the strength behaviours of geometrically similar 
specimens, and to verify these “size effect” models, 
many experimental studies on the geometrically 
similar specimens have been reported (Bažant 1984, 
Carpinteri et al 1995, Karihaloo 1999, Karihaloo et 
al. 2003). The size effect law is widely adopted for 

size effect study and relates the nominal strength σN 
of geometrically specimens to size W by: 
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where the material tensile strength ft is measured in a 
separate test, and A1 and W1 are two empirical con-
stants, which are dependent on the α-ratio. For a 
given α value, separate experiments have to be per-
formed to determine the two constants. As a result, it 
is not possible to predict the strength of a set of 
geometrically similar specimens without testing the 
specimens with same α-ratio. 

Figure 3. The influence of specimen boundary on failure mode 
and fracture strength: (a) the equivalent crack ae and (b) nomi-
nal strength σn variations with α–ratio; (c) the relationship be-
tween σn and ae or a. 
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On other hand, the strength behaviour of geomet-
rically similar specimens can also be analysed using 
the asymptotic model given in Equation 10. For this 
purpose, substituting α = constant into Equations 9 
and 10, the asymptotic equation is reduced to: 
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where W* is a constant for a given loading configu-
ration and specimen geometry, and is referred to as 
the transition specimen size (Duan & Hu 2004). 
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It can be seen here that Equation 13b has a format 
similar to Equation 12. However, the explicit ex-
pressions are given in Equation 13 instead of the two 
empirical constants used in Equation 12. This is im-
portant because the two parameters can be calcu-
lated if specimen geometry and any two properties 
of ft, a*

∞ and KIC are known, and using the two 
known parameters and specimen geometries, the 
nominal strength σn of specimens with different α-
ratios can be predicted without further experiments. 
Furthermore, it is not necessary that a separate ex-
periment is performed to measure ft because it can 
be calculated from fracture mechanics test. 

4 ANALYSIS AND DISCUSSION OF THE 
LITERATURE DATA USING ASYMPTOTIC 
BOUNDARY EFFECT MODEL 

4.1 Strengths of non-geometrically similar 
specimens 

Boundary effect on the concrete strength is reflected 
in many experimental observations available in the 
literature (e.g. Higgins & Bailey 1976, Shinohara et 
al. 1991). Shown in Figure 4 are the experimental 
results measured on a concrete with the maximum 
aggregate size of 20 mm and water/cement ratio of 
0.55 (Shinohara et al. 1991). The experiments were 
designed to test the influence of the notch depth on 
the concrete strength and were performed using 3PB 
specimens of 100×100×400 mm3 with span of 300 
mm. Two sets of concrete beams, which aged 28 
days and 1 year, respectively, were loaded with a 
fixed cross head speed of 0.005 mm/min. 

The nominal strength σn and equivalent crack ae 
are calculated using the sizes and peak loads re-
ported in the original paper. The nominal strength σn 

is plotted against crack length a in Figure 4a, and 
shows the trend that is similar to that in Figure 2b. 

 
Figure 4. Boundary effects on σn of a concrete measured using 
3PB (Shinohara et al. 1991): (a) σn variations with α-ratio; (b) 
the linear relationship between 1/σn

2 and ae; and (c) the com-
parison of 3PB σn with the large plate and the two asymptotes, 
σn and KIC criteria. 
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The experimental data shown in Figure 4a can be 
predicted using the asymptotic boundary effect 
model. For this purpose, the linear form of the re-
sults given in Figure 4a is re-plotted in Figure 4b. 
Applying Equation 11 to these data, the material 
strength ft and reference crack a*

∞ are calculated as 
1.84 MPa and 8.84 mm for 28 day concrete, and 
1.80 MPa and 25.84 mm for 1 year concrete, respec-
tively.  Substituting ft and a*

∞ values into Equation 
2, the fracture toughness is obtained as 0.34 and 0.58 
MPa⋅√m for 28 day concrete and 1 year concrete, re-
spectively.  The solid curves shown in Figure 4a are 
the predictions using the above parameters and 
Equation 10, and show good agreement. Further-
more, the predicted and measured strength data are 
plotted in the system of Log σn versus Log ae in Fig-
ures 4c and 4d to compare with the two asymptotic 
failure criteria, and show consistency with the 
boundary effect concept. 

4.2 Strengths of geometrically similar specimens 
Since the paper, “Size effect in blunt fracture: con-
crete, rock, metal” by Bažant was published in 1984, 
considerable research efforts have been made to ex-
plore both experimentally and theoretically the 
strength behaviours of geometrically similar speci-
mens. Many experiments have been performed and 
documented in the literature (Bažant 1984, 1999, 
Carpinteri et al 1995, Karihaloo 1999, Karihaloo et 
al. 2003). Among these studies, Karihaloo and col-
leagues reported a systematic study on the “size ef-
fect” in the strength of a few concrete materials 
(Karihaloo et al. 2003). Shown in Figure 5 are the 
strength behaviours of a high strength concrete 
(HSC) measured on geometrically similar specimens 
(Karihaloo et al. 2003).  The experiments were car-
ried out using three sets of 3PB specimens with a 
fixed span-to-depth ratio of 4 and α-ratios of 0.05, 
0.1 and 0.3. 

To follow most “size effect” studies, the “gross” 
area based nominal strength σN is plotted against 
specimen size W in Figure 5a where it is seen that 
for each α, a curve of Log σN versus Log W can be 
drawn. To use the SEL to predict the strength of the 
three sets of geometrically similar specimens, Equa-
tion 12 has to be applied to every data set. Only the 
parameters A1 and W1 obtained from the specimens 
with same α value can be used to predict the strength 
of these specimens. Therefore, the predictions based 
on the different α values cannot be done. 

On other hand, the predictions based on the dif-
ferent α values can easily be made using the bound-
ary effect model because the parameters given in 
Equation 10 or 13 relate explicitly to the specimen 
geometry. For example, the strength data of α = 0.1 
in Figure 5a can be used to calculate the parameters 
needed for the prediction. For this purpose, the lin-
ear form of the 3PB specimens with α = 0.1 is dis-

played in Figure 5b. From the linear plot, the frac-
ture parameters ft, a*

∞ and KIC are estimated as 11.20 
MPa, 5.56 mm and 1.66 MPa√mm, respectively. 
Substituting the parameters back into Equation 13, 
the nominal strength σN of the specimens with α = 
0.05 and 0.3 is predicted, and is plotted in Figure 5a 
to compare with the measured strength. It can be 
seen that the excellent agreements are achieved. 

 
Figure 5. (a) The comparison of σn of a HSC (Karihaloo et al, 
2003) measured on geometrically similar 3PB specimens with 
those predicted using Equation 10; (b) the 1/σn

2-ae plots for 
3PB specimens with α = 0.1 used for estimating the parameters 
in Equation 10; and (c) the comparison of the asymptotic curve 
with those measured showing the unique relationship for all 
three α-ratios. 
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When the results in Figure 5a are plotted in the 
system of Log σn versus Log ae (Fig. 5c), all the 
measured results follow the same curve. This is why 
the predictions based on different α values can be 
made. 

 
 

 
Figure 6. (a) The comparison of σn of a granite from a quarry 
in Iidate, Fukushima prefecture, Japan (Hashida & Takahashi 
1985) measured on CT and 3PB specimens with those pre-
dicted using Equation 10; (b) the 1/σn

2-ae plots for CT speci-
mens used for estimating the parameters in Equation 10; and 
(c) the comparison of the asymptotic curve with those meas-
ured showing the unique relationship for both CT and 3PB 
specimens. 
 

4.3 Strengths of different specimen geometries 

It is common that the fracture behaviour is measured 
using different geometries because of the availability 
of materials. An example is shown in Figure 6 where 
the fracture behaviours of a granite from a quarry in 
Iidate, Fukushima prefecture, Japan are tested using 
both compact tensile (CT) and 3-point-bend speci-
mens (Hashida & Takahashi 1985). As shown in 
Figure 6a, the strength values measured on both 
specimen geometries show evident size dependence. 

The original data show that the specimens used 
for the experiments are not exactly geometrically 
similar because α ratios for both CT and 3PB speci-
mens are not constants. To apply the SEL to the ex-
perimental results, the α ratios for both the CT and 
3PB specimens are averaged, and then, Equation 12 
is used to curve-fit the CT and 3PB data to estimated 
the empirical parameters for the two specimen ge-
ometries (Bažant & Kazemi 1990). 

In a contrast, the averaging calculation of the α-
ratios for either CT or 3PB specimens is not needed 
when using the asymptotic boundary effect model. 
For an α value, the 1/σn

2-ae plots will follow the 
same linear relationship. Furthermore, only the data 
from one geometry are needed to calculate two of 
the three fracture parameters, ft, a*

∞ and KIC. 
To demonstrate, in the present study, the flexibil-

ity and effectiveness of the asymptotic boundary ef-
fect model, the strength results measured on CT 
specimens will be used to predict the strength of 
both 3PB and CT specimens. For this purpose, the 
σn values measured on CT specimens are plotted in 
the linear form of 1/σn

2 versus ae in Figure 6b.  Ap-
plying Equation 11 to the plots in Figure 6b, the 
fracture parameters ft, a*

∞ and KIC are obtained as 
11.35 MPa, 5.45 mm and 1.66 MPa√mm, respec-
tively.  The predictions using these parameters and 
Equation 10 are plotted in Figure 6a to compare with 
those measured on both 3PB and CT specimens.  It 
is clearly seen that the predictions agree well with 
those results measured on both geometries.  Fur-
thermore, Figure 6c shows all the measurements and 
predictions in the system of Log σn versus Log a*

∞, 
and it can be found that these data follow the same 
curve as predicted by the asymptotic boundary effect 
model. 

5 CONCLUSION REMARKS 

The boundary effect concept and associated asymp-
totic model discussed in this paper are based on the 
two classical strength theories, the maximum tensile 
stress theory and LEFM criterion, and reflect the 
role of specimen boundaries in dominating the fail-
ure mode and therefore, strength of fracture speci-
mens. The fracture behaviours predicted using the 
model are consistent with those observed in the frac-
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ture tests of many engineering materials, i.e. speci-
mens with short crack or ligament will fail in a “duc-
tile” manner while the failure of those with crack tip 
that is far away from either boundary is dominated 
by the LEFM. 

The important distance of the crack tip to either 
the front and/or back boundary is measured by the 
equivalent crack length ae. By introducing the new 
parameter ae, the strength behaviours of finite-sized 
specimens are made equivalent to the simple case of 
the large plate where only the front boundary influ-
ences specimen fracture. As a result, the strength 
data measured on all types of fracture mechanics 
specimens – non-geometrically similar specimens, 
geometrically similar specimens with different α ra-
tios and different testing geometries – will follow 
the same relationship in the system of (Log) σn ver-
sus (Log) ae. This is important because it establishes 
the basis for predicting the strength behaviours from 
the data measured on the specimens of different ge-
ometries. 

It is demonstrated that the “size effect” in the 
fracture of geometrically similar specimens is a spe-
cial case of the boundary effect. The SEL, Equation 
12 can be derived from the boundary effect model 
by setting a constant α as shown in Equation 13b. 
However, it is more important that the asymptotic 
boundary effect function for geometrically similar 
specimens, Equation 13b gives explicit expressions 
for the two parameters that have to be measured on 
the specimens with the same geometry when using 
the SEL. Therefore, the asymptotic equation 13b can 
be used to predict the strength behaviours of a set of 
geometrically similar specimens using the data ob-
tained from other sources. 

Analysis of the literature data shows that both 
fracture toughness KIC and strength ft can be calcu-
lated from the strength measurements. This is differ-
ent from the SEL where the tensile strength ft has to 
be measured in a separate test. 
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