A plastic damage mechanics model for Engineered Cementitious
Composites

L. Dick-Nielsen, H. Stang & P. N. Poulsen
Department of Civil Engineering. The Technical University of Denmark, Lyngby, Denmark

P. Kabele
Faculty of Civil Engineering, Czech Technical University in Prague, Czech Republic

ABSTRACT: This paper discusses the establishment of a plasticity-based damage mechanics model for En
neered Cementitious Composites (ECC). The present model differs from existing models by combining a mati
and fiber description in order to describe the behavior of the ECC material. The model provides informatio
about crack opening and spacing, which makes it possible to assess the condition of a structure in the se
ceability state. A simulation of a four point bending beam is performed to demonstrate the capability of th
model.

1 INTRODUCTION ding phase, which makes it suitable for cyclic loading

- L : - imulations. In the ECC model proposed by (Kabele
Engineered Cementitious Composites (ECC) is & MY ! rop
strain-hardening fiber reinforced cementitious comiooz) the cracks are fixed when initiated. The model

posite (Li and Leung 1992). In contrast to conven-S characterized by the scheme used to describe the

tional Fiber Reinforced Concrete (FRC), ECC is chaStiffness of the fibers in the direction parallel with the
racterized by its ability to undergo multiple cracking crack surface, where the fibers are described as ran-

in tension. Conceptually, the cementitious matrix indoMIY orientated elastic Timoshenko beams. In the

ECC is assumed to contain initial flaws, which are!atter model the behavior of the cracks after initiation

randomly distributed throughout the composite ma-'"> described solely through the fibers.
terial. When the material is loaded in tension, micro- A series of finite element simulations on the mi-
cracks are initiated from the initial flaws due to stresscro and meso scale has been carried out in previ-
concentrations at the tip of the flaws. The formationous investigations by the authors. These simulations
and propagation of micro-cracks is taking place undewere performed to get a better understanding of the
increasing load and gives rise to multiple cracking andstrain-hardening process in ECC. On the micro scale,
strain-hardening. To assess the state of the material e mechanism during micro-crack propagation and
the serviceability state, information about the cracksubsequently fiber debonding and pull-out were in-
opening and spacing is required and a plasticity-basedestigated (Dick-Nielsen, Stang, and Poulsen 2005).
damage mechanics model providing such informatiorOn the meso scale, investigations on the propagation
is presented. of single and multiple cracks were performed (Dick-
Due to the strain hardening behavior of the ECCN/€lsen, Stang, and Poulsen 2006a) and (Stang, Ole-
material, smeared crack models available in commerS€N, Poulsen, and Dick-Nielsen 2006). The present
cial Finite Element Method (FEM) programs are of- P2Per describes the establishment of a plasticity-
ten used to simulate the behavior of ECC structure§ased damage mechanics model on the macro scale.
(Walter, Olesen, Stang, and Vejrum 2006) and (Dick- The present model is based on the smeared fixed,
Nielsen, Stang, and Poulsen 2006b). An overview ofmultiple cracking approach. The model differs from
smeared models is given by (Jirasek 2004). An examexisting models by combining a matrix and fiber de-
ple of a model specifically developed for ductile fiber- scription in order to describe the behavior of the ECC
reinforced cement-based composite like ECC is (Hanmaterial. This model is meant for use in the service-
Feenstra, and Billington 2003). This model is a totalability state. In this state the crack openings would
strain, rotating smeared crack model. The model ide in the orders of 40-50m. A realistic description
characterized by its detailed description of the unloaof the ECC material for these crack openings should



therefore include the matrix behavior as well as thefigure. Finally the relationship between the total nor-
fiber behavior as shown in (Dick-Nielsen, Stang, andnal strain and the numbers of parallel cracdksn the
Poulsen 2005) and (Dick-Nielsen, Stang, and PoulseRVE (fig. 2,n = N/I) is needed. Since a smooth over-
2006a). all stress strain response is aimed for, the latter curve

The matrix is described by employing an elasto-has to be continuous. This means that the number of
plastic material model for crack initiation and pro- cracks per length; increases linearly as a function of
pagation in plain concrete. The model is a mixedthe strain in the crack direction. It is assumed that all
mode cohesive crack model combined with a modicracks in one direction associated with one integration
fied Mohr-Coulomb vyield-surface. Even though thepoint has identical crack opening,
fracture energy of the ECC matrix is low, it is shown For the fibers the following input is needed: a shear
in (Stang, Olesen, Poulsen, and Dick-Nielsen 2006%tiffness constant;, which gives the relationship be-
that it is best described by a cohesive approach. Thveen crack opening and bridging stress. This con-
matrix model employed in this paper is a modifiedstant depend on the fiber volume fractior;, the
version of the model originally developed by (Carol, shear modulus for the fibers;; and the shape of the
Prat, and Lépez 1997). During sliding of a crack thefibers (Kabele 2002). The shear stiffness constant will
model is able to capture the dilatation in the normalbe calibrated through experiments.
direction. The material parameters required for the matrix are

The stiffness of the fibers in the normal direction tothe tensile strengthy;, the cohesiong, two friction
the crack surface is described through a multi-lineacoefficients for the yield surfacg, andyu, a friction
strain-stress curve, which can be found from a uni-coefficient for the plastic potentigl, and the mode |
axial tensile test. While the stiffness of the fibers pa-and Il fracture energyr,; andGrs;.
rallel to the crack surface is described as randomly
orientated Timoshenko beams bridging the crack (Ka- o
bele 2002).

1:t,ECC

2 PLASTICITY DAMAGE MODEL
A 2D representative volume element (RVE) in plane
stress with the side lengtlh,is considered. It is as-
sumed that this RVE can be considered as a mate-
rial point, where the constitutive equations are solved.
The RVE is subjected to average total stresgnd
strain, e, and can contain series of parallel multiple
cracks, where each series have different orientation. & €
In this section the constitutive equations for a RVE Figure 1: Constitutive relationship for ECC.
containing multiple cracks in multiple crack direc-
tions will be derived for the plastic and elastic state.

2.1 Model input

As input to the model, information concerning the

ECC-level, the fibers and the matrix are required.
On the ECC-level the following data are needed: =

the initial E-modulus E,, Poisson’s ratioy, the ten- 1

sile strength f; zcc, a constant) that determines the

crack opening at which the crack becomes stress free

during unloading and the threshold angle between two 1]

crack directions in one iteration point, A small an-

gle between two crack directions would be a numeri-

cal and not physical phenomenon, why the threshold .

angle should not be too small. The relationship beFigure 2: Damage law: strain vs. crack number per

tween total straing and stressy (fig. 1) is required. length,n.

This relationship can be found from a uniaxial tensile

test or through a bending test and an inverse analy-

sis (@stergaard 2003). The uniaxial tensile curve ob2.2 The constitutive equations

tained from test is usually jagged (Wang and Li 2004).The first crack is initiated when the stress state in the

To avoid numerical problems during computations armortar reaches the yield-surface. The normal to the

idealized smooth curve is employed as shown in therack surface is parallel with the normal stress that

& £



initiated the crack and the crack direction remains The relationship between the elastic strain incre-
fixed. Due to equilibrium the stress, is equal to the ment,de, and stress incremerdo is:
stress in the craclg .., and the stress in the uncracked
elastic part of the materiads.:
do = D.de., = D.(de — T'dnd —Tndé) (9)
T=0a =0 (1) where D, is the elastic stiffness matrix. This matrix
The straing can be split into two parts, one related refer to the intact material between the cracks and is

to the uncracked elastic material,and one related to therefore constant through out the entire analysis.
the additional deformations due to opening of cracks,

Eer: 1 v 0
E=E,+ € (2) D.=[C.] "= Lo sy 10 (10)
In fig. 3 a local coordinate system is shown in a 1-v -
crack. The relationship between the global strain in a 00 5%

crack, e, and the local strain increment in a crack,

e.. can be written as: The relationship between crack opening for a single

crack,d and traction in the cracks in incremental
form can be written as:

n dé =C.ds=C,T"do (11)
nAA where the tractiongds is substituted by use of eq. 5
andC., is the tangent compliance matrix for a single
ﬁx crack. In order to solve the differential equation (eq.
9) we need to introduce the damage law in incremen-
Figure 3: Local coordinate system in crack. tal form:
dn = F(epn)denn (12)
€or =Tee (3) wherede,,, is the normal component of total strain in
the crack directiondg,,,, = [1 0]T" de) and I is the
or 9 slope of the damage law (see fig. 2). Inserting eq. 11
o N NaMa ger and 12 in eq 9 the differential equation can now be
or written as:
Sy | T ”32/ Ty My ~er (4)
Yoy 2n,ny  NgMy + Ny,

do = D.(de — TFde,,6 — TnC.T do) (13)
whereT is the transformation matrix. A similar re-
lationship can be found between the global stress,
and the tractions in the crack:

In order to obtain a relationship between total strain
incrementde and the stress incremeily a rearran-
ging of eq. 13 is performed:

s=T"o (5)

The relationship between the local strain in the (Ce+TnC.,T")do = (de — TFdde,,)
crack,e..., the crack opening for a single cradk,the
length of the RVE] and the number of parallel cracks ~ (Ce +TnCoT")do = (I —TF4[10]T")de
in the RVE, N can be written as:
do = (C. +TnC.,T") (I - TF&T")de
eor = N/16 =nd (6) (14)

wheren is the number of parallel cracks per length wherel is a 3 by 3 unit mafrix and’ is a 2 by 2
Thus the total strain formulation (eq. 2) can then bematnx containing the displacement components:

rewritten as: S5m0
& = (15)

e=€,+Tnd (7) Omn 0
In incremental form the split of strain gives: The tangent stiffness matrid).,, is readily iden-

tified from eq. 14. For multiple crack directiors,
de =de, + Tdnd +Tndd (8) nC.. andF¢$’ can be written as:



is initiated the crack is opened in a mixed mode with
T=[T, T, .. T, (16) attangential opening that is proportional and twice as
large as the normal opening. The thick line is the trac-
tion path and the thin curves illustrate the evolution of

nC{" 0 0 the yield surface fronf, to f5.
ncr=| 0 ™m0 ! (17) .
0 0 n;C§
T T O A (B
0 [y, 0
F§' = (18)
L 0 0 .. F0; ] Y= 0 0.5 1
m
wherej refer to the current crack direction. S i

_ Figure 4. Evolution of traction and yield-surface in
2.3 Matrix model the matrix under mixed mode crack opening, where
The matrix is modelled employing an elasto-plasticis matrix traction and, and f, are the initial and final
material model for crack initiation and propagation yield-surface respectively.
in plain concrete. The employed model is a modi-
fied version of the model originally developed by
(Carol, Prat, and Lépez 1997). The model is a mixed® 4 Fiber model
mode cohesive crack model combined with @ modi-rhe stiffness of the fibers in the direction normal to

fied Mohr-Coulomb yield-surfacef.: the crack surface, is found through information of
the global normal stiffness of the ECEg¢¢, the ini-

o m o2 mo N2 2 tial E-modulus for plane stresB, = E,/(1 — v?), the
= (sn)” = (e = spup)” + (e = fun)”, (19) number of parallel cracks per Iengbln/,é\nd the) stiff-
where s™ is the traction in the matrix is the co- Nness of the matrix for pure mode | openirg;, ;. By
hesion, . is the friction coefficient and, is the ten- considering only the stiffness in the direction normal
sile strength of the matrix. During sliding of a crack t0 @ crack eq. 14 gives us:
the model is able to capture the dilatation in the nor-
mal direction. The dilatation phenomenon is essential R
when modelling crack propagation in cementitious (1/E+nCT)~ (1 = Fonn) = Epce (21)
materials. If a crack opening is confined in the normal L _ )
direction during sliding, large compression normalBY substituting the crack compliancey; with the
forces can be build up in the structural member. If theSUm of the mode | matrix and fiber stiffnessy; =
model does not capture this phenomenon the carryin /(Ey + Ey, 1), the mode | fiber stiffnesst), can be
capacity of the structural member can be underestifound:
mated. The model includes damage parameters and as
the material softens the shape of the yield-surface will

gradually tend towards the Coulomb yield-surface. f, — nEpccE + Buy(Erce — B+ Edw F)
The Coulomb vyield-surface eventually models fric- E — Epcc — EdunF

tion between two separate surfaces due to a non- (22)

associated flow rule (eq. 20), which represents thd/Nere the pure mode | stifiness of the matiix;, ;
plastic potential: Is found as a function of the current normal ope-

ning of a single crack. Due to the present formula-
tion the global tangent stiffness computed agrees with
g=(s" )2 = (c— 8™ 1g)* + (¢ — fig)?,  (20) the global tangent stiffnes&zc¢c found from an ide-
alization of an uniaxial tensile test, when the cracks
Fig. 4 illustrates the traction evolution in a matrix open in pure mode I. If the cracks open in mixed mode
crack for a material point. The crack is initiated un-the actual normal stiffness for the matrik; will
der a pure mode | loading condition. After the crackbe lower than the pure mode | stiffneds;, ; due to



the mixed mode crack formulation. It is assumed that
the fiber normal stiffnesgy, is unaffected by mixed fy
mode crack opening.

During sliding of a crack the fibers are modelled
as randomly orientated Timoshenko beam and the
relationship between crack deformations and shear

stresses are found by solving a boundary value pro- s
blem (Kabele 2002): Em
nn
b Oum L
Snm = k’a (23) b e Frex
wherek is a constant calibrated by test, afig and _ _ .
.m are the mode | and Il opening of the crack. The Figure 5: Un- and reloading of matrix.
tangent stiffness matrix for the fibers can then be writ-
ten as: The normal crack opening,,,, can not assume ne-
gative values, because this means that the crack sur-
Ey 0 faces would overlap. Giving the crack infinitely nor-
D}, = v N ] (24)  mal stiffness causes the stiffness of the ECC material
=2 Sum in the crack normal direction to be equal to the initial

stiffness in compression. Eq. 26 is only valid when
unloading occur while the normal traction is posi-
tive. If the normal traction is negative before unloa-
ding (this can occur during sliding) then the normal-
stiffness will be equal to infinity because the matrix
is then under compression. If the normal traction be-
comes positive eq. 26 will again be valid. In order for
the traction point to be able to move quickly from one
m side of the yield surface to the othes[(, s ) —
Do = D¢, + Dy (25) (s, —sm ) when the tangential displzﬁ:(ement incre-

The superposition of stiffness only holds becausenent change direction, the elastic shear stiffness for
the fiber volume concentratiofi; is small and be- the matrix is set tof; / (1 um). The size of the ela-
cause the fiber bridging stiffness is a smeared stiffnessfic shear stiffness has influence on the distribution of
over the crack length. The superposition of stiffnessshear stresses between matrix and fibers in the ela-
in the crack remains a hypothesis until the model hastic state. An experimental investigation of this phe-

The stiffness of the fiber€)?  is a smeared stiffness
over the crack length.

2.5 The total compliance crack matrix

Due to the fact that the matrix and fiber bridging in
the crack works in parallel, the total stiffness of the
crack can be written as:

been validated by experimental results. nomenon can decide the real size.

Un- and reloading of the fibers are controlled by the
2.6 Un- and reloading crack ope_ning. The scheme chosen_to determine _the
During un- and reloading three different elementsrelationship between the crack opening and the brid-
need to be considered: matrix, fibers and ECC. ging stiffness normal to the crack surface resemble the

Un- and reloading of the matrix is controlled by one chosen for the matrix (fig. 5). The fibers become
the yield surface. As observed in experiments (Kesneglastic when the normal crack opening decreases:
and Billington 1998) the elastic E-modulus tends to
degrade as a function of the largest crack opening ob-

b,pl .
tained. During un- and reloading of the matrix a sim- PP/ ((1 = 0)0maz)  Onn > BOmas
ple scheme taken this degrading of normal stiﬁnesﬁﬁn,unloadz 0 ¥ N
into consideration is employed (see fig. 5 and eq. 26). e o
(27)
When the crack is closed the normal traction is
m,pl _

S /(L= 0)0maz)  Oum > bomaa transferred entirely through the matrix. It is assumed
mo =20 b,.0e > 6, >0 fOr simplicity that the fiber bridging stress can not
rmtnod become negative. When the crack normal opening

00 =0 reaches the previous maximal openifg,.., the brid-

(26) ging stiffness normal to the crack surface is given by
where b, is a constant calibrated by experimesitg!  eq. 22. Itis assumed that the stiffness parallel with the
is the normal traction before unloading atigd,, is  crack surface can be found by use of eq. 23.
the maximal normal crack opening before unloading. Un- and reloading on the ECC level is governed by



the total normal strain in the crack normal direction. If before softenings,, = 0.007. After the ultimate strain
the normal strain decreases the numbers of cracks per reached in the crack normal direction, the normal
length,n remains constant. When the normal strain intraction is assumed to decrease linearly until a crack
the crack normal direction exceeds the previous maepening of 12 mm is reached. Poisson’s ratids as-
ximal strain in the crack normal direction, the ECC sumed to be 0.2.

becomes plastic and the numbers of cracks per length, In order to obtain information about crack ope-

n can again increase. ning and spacing from the simulation, information
about numbers of cracks per length,as a func-
2.7 Initiation of second crack direction tion of the total normal strain in the crack nor-

The first crack is initiated when the stress state in thenal direction,<,,, are required (see fig. 2). These
matrix reaches the yield-surface. The normal to thedata was not measured in the experiments, there-
crack surface is parallel with the normal stress thafore some reasonable values are given as input. Be-
initiated the crack and after crack initiation the crackcause the cracks are mainly opened in mode | these
direction remains fixed. An angle threshold aroundadditional input data will only have little influence
the first crack where new crack directions can not beon global results like global stresses and deflec-
initiated is introduced. A second crack direction is ini- tion of the beam. The relation between the numbers
tiated when the stress state in the matrix outside thef cracks per lengthp and strain,e,, are chosen
angle threshold reaches the yield-surface. The angl@s: €,,; n [mm™]), (7.910°%;0.1), (110°*; 0.2),
threshold ensures that two crack directions in one in{1-1073; 0.3 ), (3107%; 0.4) and (610~?; 0.5). Finally
tegration point will not be initiated with too small an the matrix properties related to the elasto-plastic ma-
angle separating them, which would be a purely nuirix model are chosen as: the matrix tensile strength,

merical phenomenon. f: =2.0 MPa, the friction coefficienty =2.6 MPa,
the mode | fracture energg; ;; = 30 N/m, the mode
3 FPB SIMULATION Il fracture energy Gr;r =30 N/m, the friction co-

The model is implemented in a user supplied routineefficients iy = 0.4, uo = 0.75 andu, = 0.375 and the

in the commercial FEM package 'DIANA’. A simula- Unloading constarit=0.5.

tion of a four point bending (FPB) beam is performed ) _

as a test of the present model (see fig. 6). Correspord-2 Simulation results

ding experimental results can be found in (Jstergaardn fig. 7 the load-deflection curve from the simulation
Walter, and Olesen 2005). For the simulation a 70s plotted together with the upper and lower bound
by 17 element mesh is employed. The elements enfrom the experiments. In contrast to the experiments
ployed are, 8 node, quadrilateral isoparametric plana partial unloading is performed in the simulation to
stress elements. The elements are based on quadratiemonstrate the capability of the model. The load is
interpolation and Gauss integration. The dimensiongpplied in three steps: first the load is increased until a
of the beam are: length 500 mm, height 60 mm andleflection of approximately 0.7 mm is reached (load
width 100 mm. The beam is simply supported andpoint a), then a partial unloading is performed (load
loaded as shown in the figure. Point A and B are usegoint b) and finally the load is increased in the remai-
for measuring of vertical displacementand point C  ning simulation. As shown in the figure the model is

will be used to evaluate the state of the material. able to reproduce the experimental results very well.
2 e P
B A
. ¢ | 60 mm
c'
125 mm 125 mm

Figure 6: Four point bending beam.

3.1 Model input 2 : ; :

The material data is found from the FPB experiments b : : : :

and an inverse analysis (@stergaard, Walter, and Ole- 95 1 > 3 4 5
sen 2005): the tensile strengtf zcc = 2.6 MPa, the U, = Ug [mm]

initial E-modulus,E, = 33 MPa, the strain-hardening . .
E-modulus,Exzcc = 0.24 MPa and the ultimate strain Figure 7: Load deflection curve.



In fig 8 the relationship between the tractienin
the normal crack direction at point C vs. the relative
deflection are shown. The total tractionreaches a
peak at a relative deflection of approximately 1 mm.
After the peak point is reached the ECC material be-
gins to soften. At crack initiation there is a difference ‘
between the traction in the ECC materialand the A |

traction in the matrixs,. This is in good agreements Figure 9: Crack pattern in the beam at a deflection of

with observation made in simulations (Dick-Nielsen, : .
Stang, and Poulsen 2005), where a crack with an Opengemrrlnd The line thickness corresponds to the crack

ning of only a few nano meter runs through the matrix
before debonding of the fibers take place. Similar ex-_ . : , ,
perimental observations has been made by (Wang a Inta to b the average crack opening associated with
Li 2004). The ECC mix 3 in these experiments hadPont C decreases linearly towards zero.
a first crack strength of 4 MPa, while experiments
performed by Wang at The Technical University of 70
Denmark, showed that the matrix in mix 3 had a ten- : : : :
sile strength of 2.83 MPa. As the crack at point C ~ 60f e D Sl
opens the matrix traction begins to soften while the sob N T ]
average fiber traction begins to increase. At a relative : : : :
deflection of approximately 4 mm the crack is only '€ 40} - e, TN (AT I
bridged by the fibers. The unloading scheme work53C i i i i
as intended, leaving a permanent plastic deformationo= 30

after unloading. o0b o A
........ TGRS R SRR R

2 10 5 5 : :

0 b_. ' : '
0 1 2 3 4 5

Figure 10: Average crack opening at point C vs. de-
flection.

The average crack spacing at point C is plotted as
a function of the relative deflection in fig. 11. After
the first crack is initiated the average crack spacing
is 10 mm. The spacing decreases until load point a is
reached. During unloading from load point a to b the
deflection decreases, but the crack spacing remains
constant. After reloading to load point b the crack spa-

Figure 8: Total tractions, fiber bridging tractions, ~ Cing decreases until a spacing of 2 mm is reached after
and matrix tractions,, in the normal crack direction Which the spacing remains constant.

at point C vs. deflection.
4 CONCLUSIONS

Fig. 9 shows the crack pattern at a deflection ofin the present paper a plasticity-based damage me-
approximately 0.9 mm before localization take placechanics model for Engineered Cementitious Compo-
in the bottom of the beam. The line thickness corresites (ECC) has been introduced. The present model
sponds to the crack opening. Cracks along the entirdiffers from existing models by combining a matrix
bottom in the middle section is about to localize, dueand a fiber model in order to describe the behavior of
to the constant moment in this section. the ECC material. Apart from information about the

Fig 10 shows the relationship between the relativestress and deformation state the model provides infor-
deflection and the average normal crack openipg, mation about crack orientation, opening and spacing.
at point C. The slope of the curve changes after a defhe information provided by the model makes it pos-
flection of 1 mm, which is the point at which softening sible to assess the state of an ECC structure in the
begins to take place in the bottom of the beam. At aserviceability state and to determine the serviceability
relative deflection of 5 mm the average crack openingstate limit.
at point C is 70um. During unloading from loading A demonstration of the model has been performed




10

1/n[mm]

Figure 11: Average crack spacing at point C vs. de-

flection.

by simulating the behavior of a FPB beam made of
ECC. The results obtained from the simulation agreed

very well with the experimental results. In addition

to global stresses and deformations information about
crack traction, opening and spacing was obtained.
Even though the example was simple it demonstrated

very well the capability of the model.

The cracks in the FPB beam mainly opens in mode

I. A test of the mixed mode capability of the model is

planed, where results from simulations will be com-

pared with experimental data.
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