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ABSTRACT: This paper discusses the establishment of a plasticity-based damage mechanics model for Engi-
neered Cementitious Composites (ECC). The present model differs from existing models by combining a matrix
and fiber description in order to describe the behavior of the ECC material. The model provides information
about crack opening and spacing, which makes it possible to assess the condition of a structure in the servi-
ceability state. A simulation of a four point bending beam is performed to demonstrate the capability of the
model.

1 INTRODUCTION

Engineered Cementitious Composites (ECC) is a
strain-hardening fiber reinforced cementitious com-
posite (Li and Leung 1992). In contrast to conven-
tional Fiber Reinforced Concrete (FRC), ECC is cha-
racterized by its ability to undergo multiple cracking
in tension. Conceptually, the cementitious matrix in
ECC is assumed to contain initial flaws, which are
randomly distributed throughout the composite ma-
terial. When the material is loaded in tension, micro-
cracks are initiated from the initial flaws due to stress
concentrations at the tip of the flaws. The formation
and propagation of micro-cracks is taking place under
increasing load and gives rise to multiple cracking and
strain-hardening. To assess the state of the material in
the serviceability state, information about the crack
opening and spacing is required and a plasticity-based
damage mechanics model providing such information
is presented.

Due to the strain hardening behavior of the ECC
material, smeared crack models available in commer-
cial Finite Element Method (FEM) programs are of-
ten used to simulate the behavior of ECC structures
(Walter, Olesen, Stang, and Vejrum 2006) and (Dick-
Nielsen, Stang, and Poulsen 2006b). An overview of
smeared models is given by (Jirasek 2004). An exam-
ple of a model specifically developed for ductile fiber-
reinforced cement-based composite like ECC is (Han,
Feenstra, and Billington 2003). This model is a total
strain, rotating smeared crack model. The model is
characterized by its detailed description of the unloa-

ding phase, which makes it suitable for cyclic loading
simulations. In the ECC model proposed by (Kabele
2002) the cracks are fixed when initiated. The model
is characterized by the scheme used to describe the
stiffness of the fibers in the direction parallel with the
crack surface, where the fibers are described as ran-
domly orientated elastic Timoshenko beams. In the
latter model the behavior of the cracks after initiation
is described solely through the fibers.

A series of finite element simulations on the mi-
cro and meso scale has been carried out in previ-
ous investigations by the authors. These simulations
were performed to get a better understanding of the
strain-hardening process in ECC. On the micro scale,
the mechanism during micro-crack propagation and
subsequently fiber debonding and pull-out were in-
vestigated (Dick-Nielsen, Stang, and Poulsen 2005).
On the meso scale, investigations on the propagation
of single and multiple cracks were performed (Dick-
Nielsen, Stang, and Poulsen 2006a) and (Stang, Ole-
sen, Poulsen, and Dick-Nielsen 2006). The present
paper describes the establishment of a plasticity-
based damage mechanics model on the macro scale.

The present model is based on the smeared fixed,
multiple cracking approach. The model differs from
existing models by combining a matrix and fiber de-
scription in order to describe the behavior of the ECC
material. This model is meant for use in the service-
ability state. In this state the crack openings would
be in the orders of 40-50µm. A realistic description
of the ECC material for these crack openings should



therefore include the matrix behavior as well as the
fiber behavior as shown in (Dick-Nielsen, Stang, and
Poulsen 2005) and (Dick-Nielsen, Stang, and Poulsen
2006a).

The matrix is described by employing an elasto-
plastic material model for crack initiation and pro-
pagation in plain concrete. The model is a mixed
mode cohesive crack model combined with a modi-
fied Mohr-Coulomb yield-surface. Even though the
fracture energy of the ECC matrix is low, it is shown
in (Stang, Olesen, Poulsen, and Dick-Nielsen 2006)
that it is best described by a cohesive approach. The
matrix model employed in this paper is a modified
version of the model originally developed by (Carol,
Prat, and López 1997). During sliding of a crack the
model is able to capture the dilatation in the normal
direction.

The stiffness of the fibers in the normal direction to
the crack surface is described through a multi-linear
strain-stress curve, which can be found from a uni-
axial tensile test. While the stiffness of the fibers pa-
rallel to the crack surface is described as randomly
orientated Timoshenko beams bridging the crack (Ka-
bele 2002).

2 PLASTICITY DAMAGE MODEL
A 2D representative volume element (RVE) in plane
stress with the side length,l is considered. It is as-
sumed that this RVE can be considered as a mate-
rial point, where the constitutive equations are solved.
The RVE is subjected to average total stress,σ and
strain,ε, and can contain series of parallel multiple
cracks, where each series have different orientation.
In this section the constitutive equations for a RVE
containing multiple cracks in multiple crack direc-
tions will be derived for the plastic and elastic state.

2.1 Model input
As input to the model, information concerning the
ECC-level, the fibers and the matrix are required.

On the ECC-level the following data are needed:
the initial E-modulus,E0, Poisson’s ratio,ν, the ten-
sile strength,ft,ECC , a constant,b that determines the
crack opening at which the crack becomes stress free
during unloading and the threshold angle between two
crack directions in one iteration point,φ. A small an-
gle between two crack directions would be a numeri-
cal and not physical phenomenon, why the threshold
angle should not be too small. The relationship be-
tween total strain,ε and stress,σ (fig. 1) is required.
This relationship can be found from a uniaxial tensile
test or through a bending test and an inverse analy-
sis (Østergaard 2003). The uniaxial tensile curve ob-
tained from test is usually jagged (Wang and Li 2004).
To avoid numerical problems during computations an
idealized smooth curve is employed as shown in the

figure. Finally the relationship between the total nor-
mal strain and the numbers of parallel cracks,N in the
RVE (fig. 2,n = N/l) is needed. Since a smooth over-
all stress strain response is aimed for, the latter curve
has to be continuous. This means that the number of
cracks per length,n increases linearly as a function of
the strain in the crack direction. It is assumed that all
cracks in one direction associated with one integration
point has identical crack opening,δ.

For the fibers the following input is needed: a shear
stiffness constant,k, which gives the relationship be-
tween crack opening and bridging stress. This con-
stant depend on the fiber volume fraction,Vf , the
shear modulus for the fibers,Gf and the shape of the
fibers (Kabele 2002). The shear stiffness constant will
be calibrated through experiments.

The material parameters required for the matrix are
the tensile strength,ft, the cohesion,c, two friction
coefficients for the yield surface,µf andµ0, a friction
coefficient for the plastic potential,µg and the mode I
and II fracture energy,GF,I andGF,II .
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Figure 1: Constitutive relationship for ECC.
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Figure 2: Damage law: strain vs. crack number per
length,n.

2.2 The constitutive equations
The first crack is initiated when the stress state in the
mortar reaches the yield-surface. The normal to the
crack surface is parallel with the normal stress that



initiated the crack and the crack direction remains
fixed. Due to equilibrium the stress,σ, is equal to the
stress in the crack,σcr and the stress in the uncracked
elastic part of the material,σe:

σ = σcr = σe (1)

The strain,ε can be split into two parts, one related
to the uncracked elastic material,εe and one related to
the additional deformations due to opening of cracks,
εcr:

ε = εe + εcr (2)

In fig. 3 a local coordinate system is shown in a
crack. The relationship between the global strain in a
crack,εcr and the local strain increment in a crack,
ecr can be written as:
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Figure 3: Local coordinate system in crack.
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whereT is the transformation matrix. A similar re-
lationship can be found between the global stress,σ
and the traction,s in the crack:

s = T T σ (5)

The relationship between the local strain in the
crack,ecr, the crack opening for a single crack,δ, the
length of the RVE,l and the number of parallel cracks
in the RVE,N can be written as:

ecr = N/lδ = nδ (6)

wheren is the number of parallel cracks per length.
Thus the total strain formulation (eq. 2) can then be
rewritten as:

ε = εe + Tnδ (7)

In incremental form the split of strain gives:

dε = dεe + T dnδ + Tndδ (8)

The relationship between the elastic strain incre-
ment,dεe and stress increment,dσ is:

dσ = Dedεe = De(dε− T dnδ− Tndδ) (9)

whereDe is the elastic stiffness matrix. This matrix
refer to the intact material between the cracks and is
therefore constant through out the entire analysis.

De = [Ce]
−1 =

E0

1− ν2




1 ν 0

ν 1 0

0 0 1−ν
2




(10)

The relationship between crack opening for a single
crack,δ and traction in the crack,s in incremental
form can be written as:

dδ = Ccrds = CcrT
T dσ (11)

where the traction,ds is substituted by use of eq. 5
andCcr is the tangent compliance matrix for a single
crack. In order to solve the differential equation (eq.
9) we need to introduce the damage law in incremen-
tal form:

dn = F (εnn)dεnn (12)

wheredεnn is the normal component of total strain in
the crack direction (dεnn = [1 0]T T dε) andF is the
slope of the damage law (see fig. 2). Inserting eq. 11
and 12 in eq 9 the differential equation can now be
written as:

dσ = De(dε− TFdεnnδ− TnCcrT
T dσ) (13)

In order to obtain a relationship between total strain
increment,dε and the stress increment,dσ a rearran-
ging of eq. 13 is performed:

(Ce + TnCcrT
T )dσ = (dε− TFδdεnn)

(Ce + TnCcrT
T )dσ = (I − TFδ[1 0]T T )dε

dσ = (Ce + TnCcrT
T )−1(I − TFδ′T T )dε

(14)
whereI is a 3 by 3 unit matrix andδ′ is a 2 by 2
matrix containing the displacement components:

δ′ =




δnn 0

δmn 0


 (15)

The tangent stiffness matrix,Dep, is readily iden-
tified from eq. 14. For multiple crack directionsT ,
nCcr andFδ′ can be written as:



T = [ T 1 T 2 ... T j ] (16)
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wherej refer to the current crack direction.

2.3 Matrix model
The matrix is modelled employing an elasto-plastic
material model for crack initiation and propagation
in plain concrete. The employed model is a modi-
fied version of the model originally developed by
(Carol, Prat, and López 1997). The model is a mixed
mode cohesive crack model combined with a modi-
fied Mohr-Coulomb yield-surface,f :

f = (sm
mn)2 − (c− sm

nnµ)2 + (c− ftµ)2, (19)

wheresm is the traction in the matrix,c is the co-
hesion,µ is the friction coefficient andft is the ten-
sile strength of the matrix. During sliding of a crack
the model is able to capture the dilatation in the nor-
mal direction. The dilatation phenomenon is essential
when modelling crack propagation in cementitious
materials. If a crack opening is confined in the normal
direction during sliding, large compression normal
forces can be build up in the structural member. If the
model does not capture this phenomenon the carrying
capacity of the structural member can be underesti-
mated. The model includes damage parameters and as
the material softens the shape of the yield-surface will
gradually tend towards the Coulomb yield-surface.
The Coulomb yield-surface eventually models fric-
tion between two separate surfaces due to a non-
associated flow rule (eq. 20), which represents the
plastic potential:

g = (sm
mn)2 − (c− sm

nnµg)
2 + (c− ftµg)

2, (20)

Fig. 4 illustrates the traction evolution in a matrix
crack for a material point. The crack is initiated un-
der a pure mode I loading condition. After the crack

is initiated the crack is opened in a mixed mode with
at tangential opening that is proportional and twice as
large as the normal opening. The thick line is the trac-
tion path and the thin curves illustrate the evolution of
the yield surface fromf0 to f2.
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Figure 4: Evolution of traction and yield-surface in
the matrix under mixed mode crack opening, wheres
is matrix traction andf0 andf2 are the initial and final
yield-surface respectively.

2.4 Fiber model
The stiffness of the fibers in the direction normal to
the crack surface,Eb is found through information of
the global normal stiffness of the ECC,EECC , the ini-
tial E-modulus for plane stress,E = E0/(1− ν2), the
number of parallel cracks per length,n and the stiff-
ness of the matrix for pure mode I opening,Em

nn,I . By
considering only the stiffness in the direction normal
to a crack eq. 14 gives us:

(1/E + nCcr
11)

−1(1− Fδnn) = EECC (21)

By substituting the crack compliance,Ccr
11 with the

sum of the mode I matrix and fiber stiffness,Ccr
11 =

1/(Eb + Em
nn,I), the mode I fiber stiffness,Eb can be

found:

Eb =
nEECCE + Em

nn,I(EECC −E + EδnnF )

E −EECC −EδnnF
(22)

where the pure mode I stiffness of the matrix,Em
nn,I

is found as a function of the current normal ope-
ning of a single crack. Due to the present formula-
tion the global tangent stiffness computed agrees with
the global tangent stiffness,EECC found from an ide-
alization of an uniaxial tensile test, when the cracks
open in pure mode I. If the cracks open in mixed mode
the actual normal stiffness for the matrix,Em

nn will
be lower than the pure mode I stiffness,Em

nn,I due to



the mixed mode crack formulation. It is assumed that
the fiber normal stiffness,Eb is unaffected by mixed
mode crack opening.

During sliding of a crack the fibers are modelled
as randomly orientated Timoshenko beam and the
relationship between crack deformations and shear
stresses are found by solving a boundary value pro-
blem (Kabele 2002):

sb
nm = k

δnm

δnn

(23)

wherek is a constant calibrated by test, andδnn and
δnm are the mode I and II opening of the crack. The
tangent stiffness matrix for the fibers can then be writ-
ten as:

Db
cr =




Eb 0

−kδnm

δ2
nn

k
δnn


 (24)

The stiffness of the fibers,Db
cr is a smeared stiffness

over the crack length.

2.5 The total compliance crack matrix
Due to the fact that the matrix and fiber bridging in
the crack works in parallel, the total stiffness of the
crack can be written as:

Dcr = Db
cr + Dm

cr (25)

The superposition of stiffness only holds because
the fiber volume concentration,Vf is small and be-
cause the fiber bridging stiffness is a smeared stiffness
over the crack length. The superposition of stiffness
in the crack remains a hypothesis until the model has
been validated by experimental results.

2.6 Un- and reloading
During un- and reloading three different elements
need to be considered: matrix, fibers and ECC.

Un- and reloading of the matrix is controlled by
the yield surface. As observed in experiments (Kesner
and Billington 1998) the elastic E-modulus tends to
degrade as a function of the largest crack opening ob-
tained. During un- and reloading of the matrix a sim-
ple scheme taken this degrading of normal stiffness
into consideration is employed (see fig. 5 and eq. 26).

Em
nn,unload =





sm,pl
nn /((1− b)δmax) δnn > bδmax

0 bδmax > δnn > 0

∞ δ = 0
(26)

where b, is a constant calibrated by experiments,sm,pl
nn

is the normal traction before unloading andδmax is
the maximal normal crack opening before unloading.
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Figure 5: Un- and reloading of matrix.

The normal crack opening,δnn can not assume ne-
gative values, because this means that the crack sur-
faces would overlap. Giving the crack infinitely nor-
mal stiffness causes the stiffness of the ECC material
in the crack normal direction to be equal to the initial
stiffness in compression. Eq. 26 is only valid when
unloading occur while the normal traction is posi-
tive. If the normal traction is negative before unloa-
ding (this can occur during sliding) then the normal-
stiffness will be equal to infinity because the matrix
is then under compression. If the normal traction be-
comes positive eq. 26 will again be valid. In order for
the traction point to be able to move quickly from one
side of the yield surface to the other ((sm

nn, sm
nm) →

(sm
nn,−sm

nm)) when the tangential displacement incre-
ment change direction, the elastic shear stiffness for
the matrix is set toft / (1 µm). The size of the ela-
stic shear stiffness has influence on the distribution of
shear stresses between matrix and fibers in the ela-
stic state. An experimental investigation of this phe-
nomenon can decide the real size.

Un- and reloading of the fibers are controlled by the
crack opening. The scheme chosen to determine the
relationship between the crack opening and the brid-
ging stiffness normal to the crack surface resemble the
one chosen for the matrix (fig. 5). The fibers become
elastic when the normal crack opening decreases:

Eb
nn,unload =





sb,pl
nn /((1− b)δmax) δnn > bδmax

0 bδmax > δnn > 0

(27)
When the crack is closed the normal traction is

transferred entirely through the matrix. It is assumed
for simplicity that the fiber bridging stress can not
become negative. When the crack normal opening
reaches the previous maximal opening,δmax, the brid-
ging stiffness normal to the crack surface is given by
eq. 22. It is assumed that the stiffness parallel with the
crack surface can be found by use of eq. 23.

Un- and reloading on the ECC level is governed by



the total normal strain in the crack normal direction. If
the normal strain decreases the numbers of cracks per
length,n remains constant. When the normal strain in
the crack normal direction exceeds the previous ma-
ximal strain in the crack normal direction, the ECC
becomes plastic and the numbers of cracks per length,
n can again increase.

2.7 Initiation of second crack direction
The first crack is initiated when the stress state in the
matrix reaches the yield-surface. The normal to the
crack surface is parallel with the normal stress that
initiated the crack and after crack initiation the crack
direction remains fixed. An angle threshold around
the first crack where new crack directions can not be
initiated is introduced. A second crack direction is ini-
tiated when the stress state in the matrix outside the
angle threshold reaches the yield-surface. The angle
threshold ensures that two crack directions in one in-
tegration point will not be initiated with too small an
angle separating them, which would be a purely nu-
merical phenomenon.

3 FPB SIMULATION
The model is implemented in a user supplied routine
in the commercial FEM package ’DIANA’. A simula-
tion of a four point bending (FPB) beam is performed
as a test of the present model (see fig. 6). Correspon-
ding experimental results can be found in (Østergaard,
Walter, and Olesen 2005). For the simulation a 70
by 17 element mesh is employed. The elements em-
ployed are, 8 node, quadrilateral isoparametric plane
stress elements. The elements are based on quadratic
interpolation and Gauss integration. The dimensions
of the beam are: length 500 mm, height 60 mm and
width 100 mm. The beam is simply supported and
loaded as shown in the figure. Point A and B are used
for measuring of vertical displacement,u and point C
will be used to evaluate the state of the material.
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Figure 6: Four point bending beam.

3.1 Model input
The material data is found from the FPB experiments
and an inverse analysis (Østergaard, Walter, and Ole-
sen 2005): the tensile strength,ft,ECC = 2.6 MPa, the
initial E-modulus,E0 = 33 MPa, the strain-hardening
E-modulus,EECC = 0.24 MPa and the ultimate strain

before softening,εu = 0.007. After the ultimate strain
is reached in the crack normal direction, the normal
traction is assumed to decrease linearly until a crack
opening of 12 mm is reached. Poisson’s ratio,ν is as-
sumed to be 0.2.

In order to obtain information about crack ope-
ning and spacing from the simulation, information
about numbers of cracks per length,n as a func-
tion of the total normal strain in the crack nor-
mal direction,εnn are required (see fig. 2). These
data was not measured in the experiments, there-
fore some reasonable values are given as input. Be-
cause the cracks are mainly opened in mode I these
additional input data will only have little influence
on global results like global stresses and deflec-
tion of the beam. The relation between the numbers
of cracks per length,n and strain,εnn are chosen
as: (εnn; n [mm−1]), (7.9·10−5; 0.1), (1·10−4; 0.2),
(1·10−3; 0.3 ), (3·10−3; 0.4) and (6·10−3; 0.5). Finally
the matrix properties related to the elasto-plastic ma-
trix model are chosen as: the matrix tensile strength,
ft = 2.0 MPa, the friction coefficient,c = 2.6 MPa,
the mode I fracture energy,Gf,I = 30 N/m, the mode
II fracture energy ,GF,II = 30 N/m, the friction co-
efficientsµf = 0.4,µ0 = 0.75 andµg = 0.375 and the
unloading constantb = 0.5.

3.2 Simulation results
In fig. 7 the load-deflection curve from the simulation
is plotted together with the upper and lower bound
from the experiments. In contrast to the experiments
a partial unloading is performed in the simulation to
demonstrate the capability of the model. The load is
applied in three steps: first the load is increased until a
deflection of approximately 0.7 mm is reached (load
point a), then a partial unloading is performed (load
point b) and finally the load is increased in the remai-
ning simulation. As shown in the figure the model is
able to reproduce the experimental results very well.
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Figure 7: Load deflection curve.



In fig 8 the relationship between the traction,s in
the normal crack direction at point C vs. the relative
deflection are shown. The total traction,s reaches a
peak at a relative deflection of approximately 1 mm.
After the peak point is reached the ECC material be-
gins to soften. At crack initiation there is a difference
between the traction in the ECC material,s and the
traction in the matrix,sm. This is in good agreements
with observation made in simulations (Dick-Nielsen,
Stang, and Poulsen 2005), where a crack with an ope-
ning of only a few nano meter runs through the matrix
before debonding of the fibers take place. Similar ex-
perimental observations has been made by (Wang and
Li 2004). The ECC mix 3 in these experiments had
a first crack strength of 4 MPa, while experiments
performed by Wang at The Technical University of
Denmark, showed that the matrix in mix 3 had a ten-
sile strength of 2.83 MPa. As the crack at point C
opens the matrix traction begins to soften while the
average fiber traction begins to increase. At a relative
deflection of approximately 4 mm the crack is only
bridged by the fibers. The unloading scheme works
as intended, leaving a permanent plastic deformation
after unloading.
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Figure 8: Total traction,s, fiber bridging traction,sB

and matrix traction,sm in the normal crack direction
at point C vs. deflection.

Fig. 9 shows the crack pattern at a deflection of
approximately 0.9 mm before localization take place
in the bottom of the beam. The line thickness corre-
sponds to the crack opening. Cracks along the entire
bottom in the middle section is about to localize, due
to the constant moment in this section.

Fig 10 shows the relationship between the relative
deflection and the average normal crack opening,δnn

at point C. The slope of the curve changes after a de-
flection of 1 mm, which is the point at which softening
begins to take place in the bottom of the beam. At a
relative deflection of 5 mm the average crack opening
at point C is 70µm. During unloading from loading

CLP/2

Figure 9: Crack pattern in the beam at a deflection of
0.9 mm. The line thickness corresponds to the crack
opening.

point a to b the average crack opening associated with
point C decreases linearly towards zero.
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Figure 10: Average crack opening at point C vs. de-
flection.

The average crack spacing at point C is plotted as
a function of the relative deflection in fig. 11. After
the first crack is initiated the average crack spacing
is 10 mm. The spacing decreases until load point a is
reached. During unloading from load point a to b the
deflection decreases, but the crack spacing remains
constant. After reloading to load point b the crack spa-
cing decreases until a spacing of 2 mm is reached after
which the spacing remains constant.

4 CONCLUSIONS
In the present paper a plasticity-based damage me-
chanics model for Engineered Cementitious Compo-
sites (ECC) has been introduced. The present model
differs from existing models by combining a matrix
and a fiber model in order to describe the behavior of
the ECC material. Apart from information about the
stress and deformation state the model provides infor-
mation about crack orientation, opening and spacing.
The information provided by the model makes it pos-
sible to assess the state of an ECC structure in the
serviceability state and to determine the serviceability
state limit.

A demonstration of the model has been performed
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Figure 11: Average crack spacing at point C vs. de-
flection.

by simulating the behavior of a FPB beam made of
ECC. The results obtained from the simulation agreed
very well with the experimental results. In addition
to global stresses and deformations information about
crack traction, opening and spacing was obtained.
Even though the example was simple it demonstrated
very well the capability of the model.

The cracks in the FPB beam mainly opens in mode
I. A test of the mixed mode capability of the model is
planed, where results from simulations will be com-
pared with experimental data.
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