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ABSTRACT: In this paper, the computational modelling of fracture in quasi-brittle materials is addressed. An
embedded discontinuity methodology is presented, which iscalled the discrete strong discontinuity approach
(Alfaiate and Sluys 2005). This formulation is derived within the scope of the strong discontinuity concept
(Oliver et al. 2002); however, instead of considering fracture as a natural evolution from continuum damage, a
discrete crack approach is adopted: the onset of fracture gives rise to the formation of a localized discontinuity,
which can evolve from a zero width fictitious crack to a fully open stress-free crack.
The use of a pure discrete methodology was implemented by means of interface elements more than twenty
years ago (Hillerborg et al. 1976), (Bocca et al. 1986). In spite of the drawbacks of this approach whenever
the crack path is not known in advance, it is still known to be most numerically reliable for prescribed crack-
ing. This is why this formulation is still being used nowadays, for instance, to model the interface behaviour
between two materials, such as with masonry, the internal concrete-steel adhesion or the external concrete-FRP
reinforcement.
Recently, a new technique has been used to model fracture, known as the extended finite element method (Möes
et al. 1999). In this paper a comparison of these different strong discontinuity descriptions is given. Several sim-
ple examples obtained at element level are first presented, with the purpose of clearly illustrating the differences
between the discrete-interface, the discrete strong discontinuity and the extended finite element approaches.
Next, towards a unified view of these different strong discontinuity descriptions, a better approximation of the
kinematics of the element ahead of the crack tip is proposed,common to both the discrete strong discontinuity
approach and the extended finite element method.

1 INTRODUCTION

In this paper, three different strong discontinuity de-
scriptions are compared: the discrete-interface, the
discrete strong discontinuity method and the extended
finite element method. All these formulations aim to
approximate the same problem, which consists of a
continuum crossed by a discontinuityΓd, dividing Ω
into two parts:Ω+ andΩ−. This discontinuity can be
interpreted as an internal boundary where the trac-
tions t+ and t− are applied. In the discrete-interface
approach, interface elements located at interelement
boundaries are used to model the discontinuity. With
this formulation we get:i) mesh objectivity with pre-
scribed cracks andii) a true representation of strong
discontinuities. Nevertheless, it is well known that
with non-prescribed cracks, either remeshing must
be performed (Ingraffea 1989) or approximated crack
paths are obtained (Alfaiate et al. 1997).

In the embedded discontinuity approach (Simo
and Rifai 1990), (Simo et al. 1993), (Armero and
Garikipati 1996), (Oliver 1996):i) the additional de-
grees of freedom are local to each parent element,
ii) constant jumps are adopted across each element
iii) traction continuity is imposed in the strong form,
although in average, which gives rise toiv) a non-
symmetric formulation. Later, Sancho et al. (2005)
developed a consistent weak symmetric formulation
in which: i) constant jumps still are adopted across
each parent element, butii) no tracking of the crack
path is enforced. As a consequence, the crack crosses
the parent element in anoptimal manner so that the
element can properly accommodate the additional de-
formation, avoiding the locking problems obtained in
the former embedded formulation.

Alfaiate and Sluys (2005), developed a third em-
bedded formulation designated as the discrete strong



discontinuity approach (DSDA), in which:i) a weak
symmetric consistent form is also used,ii) the ad-
ditional degrees of freedom are global,iii) non-
homogeneous jumps are adopted in each parent ele-
ment andiv) both the crack path and the jumps are
continuous across element boundaries.

Finally, in the extended finite element method (X-
FEM) a consistent weak form is still used, butΩ+ and
Ω− are modelled using two element layers on top of
each other (Möes et al. 1999), (Duarte et al. 2000),
(Wells and Sluys 2001), (Simone et al. 2003):i) in
each parent element the degrees of freddom are dou-
bled,ii) the additional degrees of freedom are global,
iii) continuous jumps as well as crack paths across
element boundaries are obtained andiv) this formula-
tion is within the scope of the generalized finite ele-
ment method.

It has been often said that the extended finite ele-
ment method is superior to the embedded discontinu-
ity approach. Oliver et al. (2006) made a comparison
between the former non-symmetric embedded formu-
lation and the extended finite element method and
they did not find that much difference. Here, another
comparison is made, this time among the discrete
strong discontinuity approach, the extended finite ele-
ment method and the discrete-interface approach. For
that purpose, the variational formulation is first briefly
reviewed; next, trying to better understand thewhys
in detail, the numerical implementation will be pre-
sented in a very simple way, at the element level. Fi-
nally, some simple academic examples are presented.

2 KINEMATICS and VARIATIONAL FORMU-
LATION

The kinematics of both the discrete strong discontinu-
ity approach and the extended finite element method
can be presented in a common framework: it is usual
to assume that the total displacementu is obtained as
the sum of the regular partû in the bulk and the dis-
placement jump[[u]] which is transmitted toΩ+ using
the heaviside function:

u(x) = û(x)+HΓdũ, (1)

whereHΓd is the heaviside function and̃u are addi-
tional displacements induced by the jump, such that

[[u]] = ũ|Γd. (2)

The variational formulation used for the three
strong discontinuity approaches has been derived in
various ways. For instance, in the extended finite el-
ement method, Simone (2003) considers the discon-
tinuity as an internal boundary and imposes sepa-
rately the principle of virtual work onΩ and Ω+,
whereas Wells (2001) used the properties of the dirac

delta function to obtain the energy in the discontinu-
ity. Here, the variational formulation for all these dis-
crete approaches is presented in a very simple format
which is usually adopted in the discrete-interface ap-
proach. Consider the principle of virtual work, take
the strain energy

R

Ω\Γd
(∇∇∇sδu) : σσσ(εεε)dΩ, the external

work
R

Ω\Γd
δu ·bdΩ+

R

Γt
δu · t̄dΓ (these are the usual

terms in a continuum approach) and add the term
corresponding to the work done in the discontinuity
R

Γd
δ[[u]] · t+dΓ. We obtain:

−
Z

Ω\Γd

(∇∇∇sδu) : σσσ(εεε)dΩ+
Z

Ω\Γd

δu ·bdΩ

+
Z

Γt

δu · t̄dΓ+
Z

Γd

δ[[u]] · t+dΓ = 0,

(3)

where(·) and(:) refer to single and double contrac-
tions, respectively. In fact, this variational formulation
was already presented in Malvern (1969) and still ap-
plies to all three formulations studied here.

3 NUMERICAL IMPLEMENTATION
If we decouple the work in the bulk from the work in
the discontinuity, we obtain two equations. Incremen-
tally, upon discretization, we get:

Ke
aadâe = dfe

ext (4)

Kddwe = dfe
w,ext (5)

where â are the regular degrees of freedom used to
approximatêu, w are the degrees of freedom used to
approximate the jumps[[u]],

Ke
aa =

Z

Ωe
BeTDeBedΩ, (6)

Ke
d =

Z

Γe
d

Ne
w

TTeNe
wdΓ, (7)

dfe
ext =

Z

Ωe
NeTdbedΩ+

Z

Γe
t

NeTdt̄edΓ, (8)

anddfe
w,ext is the external force vector applied to the

discontinuity. In equation (7),Ne
w are the shape func-

tions used to interpolate the jumps along the disconti-
nuity linesΓd andT is the constitutive matrix adopted
for the discontinuity, i.e.,

dte = T[[u]] = TNe
wdwe (9)

This approximation is particularly suited to the
discrete-interface approach, in which the jumps are
obtained at separate interface elements. The other two
approaches actually differ in the way the discontinuity
is represented.



Figure 1: DSDA: mode-I discontinuity

Figure 2: DSDA: mode-II discontinuity

In the discrete strong discontinuity approach these
equations still apply since the discontinuity is embed-
ded as if it was an interface. In figs.1 and 2 the black
nodes are the regular nodes and the white nodes are
the additional jump nodes. In order to evaluate the to-
tal displacementsu, the jumps are transmitted to the
regular nodes as a rigid body motion:

ue = Ne(âe+HΓd ã) = Ne(âe+HΓdMe
ww), (10)

where ã are the additional nodal displacements in-
duced by the jumps and matrixMe

w gives rise to a
rigid-body motion ofΩe+ over Ωe− (Alfaiate and
Sluys 2005).

In the extended finite element method, the degrees
of freedom are doubled, since the enrichment is pro-
vided by a second element layer (see figs.3 and 4).
Thus, the total continuum displacementsû are now
the sum of the displacements from the two layers:

ûe = Ne(âe
1+HΓd âe

2), (11)

whereâe
1 and âe

2 are the regular part obtained at the
first and second layer, respectively, the latter sub-
jected to:

âe
2 = 0 atΓd. (12)

Thus, we obtain,

ue = ûe+HΓdũe

= Ne[âe
1+HΓd(â

e
2+ ãe)] in Ω\Γd.

(13)

Note that, according to this interpretation, from equa-
tion (13) it is clear that the degrees of freedomã re-
main a rigid-body motion projection of the jumps, ex-
actly the same way as done with the discrete strong
discontinuity approach. In fact, due to equations (12)
and (2), we obtain:

ũ|Γd = N|Γdã. (14)

Figure 3: X-FEM: mode-I

Figure 4: X-FEM: mode-II discontinuity

Furthermore, due to equation (12) and sinceBã = 0,
the usual coupled element equations in the extended
finite element method (Wells 2001), (Simone 2003):

Ke
aadae+K+e

aa dbe = dfe
ext

K+e
aa dae+

(

K+e
aa +Ke

d

)

dbe = df+e
ext

(15)

become:

Ke
aadâe

1+K+e
aa dâe

2 = dfe
ext

K+e
aadâe

1 +K+e
aa dâe

2+Ke
ddãe = df+e

ext

(16)

At this stage, three main conclusions can be drawn:

1. due to the separation of theâe ∈ Ω into (âe
1 ∈ Ω

and âe
2 ∈ Ω+), the difference between these two

discretizations lies in the bulk:

∆âe =

{

âe
1− âe if x ∈ Ω−

âe
1+ âe

2− âe if x ∈ Ω+; (17)

2. as a consequence, the gradient of the additional
displacementŝae

2 in Ω+ is non-zero, which is the
only reason why separate integration onΩ+ be-
comes necessary;

3. the kinematics of the discrete strong discontinuity
approach may be considered as a particular case
of the extended finite element method in whichâe

2
drops, giving rise to a rigid second layer.

Two extreme situations can be defined:i) either the
discontinuity is much softer than the bulk− this is the
usual case when we model a crack or a shear band; or
ii) the discontinuity is much stiffer than the bulk.

In the following section some simple examples at
element level are presented using the three descrip-
tions.



Figure 5: Mode-I: soft discontinuity

Figure 6: Mode-I: soft bulk

4 EXAMPLES
Consider the case presented in fig.5, in which we
have a mode-I example and the discontinuity is much
softer than the bulk (Young modulus E=103 GPa, nor-
mal discontinuity stiffness T=1 MPa/mm). With the
discrete-interface approach we obtain the configura-
tion in black; the extended finite element method and
the discrete strong discontinuity approach configura-
tions are both in grey and practically coincide.

Now, if the discontinuity is much stiffer than the
bulk, (Young modulus E=10 MPa, normal disconti-
nuity stiffness T=1000 MPa/mm) the differences be-
come more important due to the additional bulk defor-
mation. In fig.6, the discrete-interface configuration
is represented in black, the extended finite element
method is plain grey and the discrete strong discon-
tinuity approach is dashed grey.

Consider again the example of fig.5. IfΩ+ tends to
zero, the differences between the DSDA and the X-
FEM results decrease even further (see fig.7).

In mode-II the conclusions are similar; in fig.8,

Figure 7: Mode-I: soft discontinuity

Figure 8: Mode-II: soft discontinuity

Figure 9: Mode-II: soft bulk

we see the results obtained with a soft shear band,
whereas in fig.9 the results obtained with a stiff shear
band are presented. In this example the difference be-
tween the regular displacement fields in the DSDA
and the X-FEM,∆â, is marked.

From these simple examples it is possible to con-
clude that:

i. for normal cracks or shear bands, in which case
the discontinuities are much softer than the bulk,
the results obtained from these two formulations
(DSDA and X-FEM) are essentially the same
and the nodal displacements practically coincide
with those obtained with the discrete-interface
approach;

ii. in the opposite case, in which the discontinuity
is much stiffer than the bulk, the X-FEM gives
rise to nodal displacements closer than the DSDA
to the ones obtained with the discrete-interface
approach.

The latter conclusion emphasizes the fact that, in the
X-FEM, there is an inherent bulk refinement, which
can be interpreted as a particular case ofmesh refine-
ment. In fact, the superposition of the two layers in
the bulk can better approximate the solution obtained
with two different elements, as done with the discrete-
interface approach.

Nevertheless, if the discontinuity is much stiffer
than the bulk, we might distinguish three possibilities:
a) the continuum is crossed by a stiff inclusion,b) the
discontinuity is submitted to compressive stresses and
the constitutive relation is penalized in order to avoid
overlapping, orc) there is no reason to insert a dis-
continuity in the first place! Indeed, we should keep



Figure 10: soft discontinuity: discrete-interface vs
DSDA

Figure 11: soft discontinuity: discrete-interface vs X-
FEM

in mind that both the DSDA and the X-FEM are ele-
ment enrichment techniques, which were built aiming
to approximate softening; within this scope, both de-
scriptions give rise to similar results.

Now let us look once more to the first mode-I ex-
ample in more detail. If the real deformation of the el-
ements is taken into account the results are described
below: in fig.10 the configuration obtained with both
the discrete-interface and the DSDA are presented,
whereas in fig.11 the configuration obtained with both
the discrete-interface and the X-FEM are presented.
Again, the discrete-interface is represented in black,
the DSDA is represented in dashed grey and the X-
FEM in plain grey. Although in the first element
the energy in all situations is practically the same (it
would be exactly the same if the bulk was rigid), that
is not the case in the second element. Element number
2 should deform according to the discrete-interface
approach; however, neither the DSDA nor the X-FEM
can model this behaviour (note that with the X-FEM,
the right additional nodes, lying on the tip edge, are
inactive). This fact may influence the stress field near
the crack tip, thus it may have consequences for the
evolution of the discontinuity. However, in order to al-
low the second element to deform properly, we need
to defineΩ+ (see fig.11), and this we do not know
yet!

Here an approximation for this problem is pro-
posed, which can be regarded as common to both the
DSDA and the X-FEM. First, let us assume a posi-
tion for Γd, as represented in fig.12 (with the corre-
sponding definition ofΩ+). In this figure, the second
layer obtained with the X-FEM is represented in grey.
Based on the location of the additional nodes adja-

Figure 12: An approximation to the correct deforma-
tion of element 2

cent to the tip (nodes i and j marked in white), we
know that thelacking displacement field in the sec-
ond element,∆û(2)(x), is equal to the additional dis-
placement field obtained for the first element,ũ(1)(x),
i.e.,

∆â(2) =

{

ã(1) if nodes lie at tip edge
0 otherwise.

(18)

As a consequence, instead of equations (6) and (7) in
the DSDA or equations (15) in the X-FEM, we can
write the following for the second element:

K(2)
aa dâ = df(2)

ext−K+(2)
aa d∆â(2) = df∗(2)

ext

dw(2)( or dã(2)) = 0.

(19)

Note that no additional degrees of freedom are in-
troduced in this formulation; however, separate inte-
gration onΩ+ becomes necessary in the second ele-
ment. The introduction of this new approach should
approximate both the DSDA and the X-FEM from
the discrete-interface description and might be inter-
preted as a contribution towards a unified view of all
three strong discontinuity formulations.

5 CONCLUSIONS
In this paper a comparative study of three strong
discontinuity formulations is presented, namely the
discrete-interface approach, the discrete strong dis-
continuity approach and the extended finite element
method. Towards a unified view of these different dis-
continuity descriptions, some shared properties can be
put forward, namely:

1. they can be built upon the same variational for-
mulation;

2. the kinematics of the DSDA can be interpreted as
a particular case of the kinematics of the X-FEM
in which the second element layer is rigid;

3. XFEM exhibits better kinematics of the bulk,
closer to the kinematics obtained with the
discrete-interface approach,



4. but both the DSDA and the X-FEM give rise to
similar results for one element crossed by a soft
discontinuity;

5. both the X-FEM and the DSDA provideex-
actlythe same description of softening behaviour
within a strong discontinuity;

6. it is possible to better approximate the kinemat-
ics of the element ahead of the tip in a common
way for both the DSDA and the X-FEM descrip-
tions without the need to increase the number of
degrees of freedom, although sub-integration on
Ω+ becomes necessary.

Some main different characteristics can also be ad-
vanced, such as:

1. the DSDA can not be considered a particular case
of the X-FEM since it is built on a different back-
ground− the DSDA is an embedded approach,
built at element level, whereas the X-FEM is
built at nodal level;

2. in the X-FEM more degrees of freedom are ned-
ded than in the DSDA;

3. in the X-FEM, sub-integration onΩ+ is only
needed to evaluate a part of the bulk displace-
ment field, i.e.,̂a2;

4. this sub-integration could be interpreted as a sort
of remeshing, although certainly more benign
than the usual one since no additional elements
are defined;

5. in the DSDA no sub-integration onΩ+ is neces-
sary;

6. the X-FEM can lead to numerical integration
problems along the discontinuityΓd, which is
not the case with the DSDA (Simone 2004);

7. in the DSDA, additional nodes are located at the
discontinuity, where the quantities of interest are
to be measured, giving rise to a straight physical
interpretation of the additional degrees of free-
dom;

8. due to (7), problems in which boundary condi-
tions must be introduced atΓd, like moisture or
the injection of epoxy resin to repair cracks, ben-
efit from such implementation.
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