
1 INTRODUCTION  

The cohesive zone (or crack) model of Hillerborg et 
al. (1976) has been extensively used in the study of 
localisation and failure in quasi-brittle materials and 
structures. Elices et al. (2002) have discussed its ad-
vantages and limitations. In the most widely used 
standard formulation of the model (see Fig. 1 be-
low), it is assumed that the stress–strain behaviour is 
isotropic linear elastic, and that the crack is initiated 
at a point where the maximum tensile principal 
stress σ1 reaches the tensile strength ft of the un-
cracked material, and that the crack is oriented nor-
mal to the direction of σ1. An evolution law is also 
postulated for the monotonic mode I loading so that 
the cohesive stress is a unique function of the crack 
opening which, for concrete, decreases monotoni-
cally along the cohesive zone. The cohesive crack 
propagates when σ1 at its tip reaches ft. Although 
this standard formulation of the cohesive crack 
model is highly simplified, it is able to capture the 
essence of the fracture process in concrete speci-
mens and structures (see Karihaloo 1995). 

de Borst et al. (2004) have given a concise over-
view of the various ways to numerically implement 
the cohesive zone methodology. They concluded 
that the extended/generalized finite element method 
(XFEM) (Moës et al. 1999, Strouboulis et al. 2001, 
Karihaloo & Xiao 2003b, Xiao & Karihaloo 2005) 
provides a proper representation of the discrete char-
acter of cohesive zone formulations avoiding any 
mesh bias. The XFEM enriches the standard local 

FE approximations with known information about 
the problem, such as a displacement discontinuity 
across a crack, the asymptotic solution at a crack tip, 
or a strain discontinuity across an interface, with the 
use of the partition of unity (PU). In contrast with 
the FEM, it avoids the use of meshes conforming 
with the discontinuity and adaptive remeshing as the 
discontinuity grows. 

In the XFEM formulation of the cohesive zone 
model, Wells and Sluys (2001) used the jump func-
tion as an enrichment function for the whole cohe-
sive crack, hence the cohesive crack tip touches the 
element boundary. Moës and Belytschko (2002) 
used the jump function for the part of the cohesive 
crack not adjacent to its tip, and a branch function 
adjacent to the tip. This approach can handle cases 
in which the cohesive crack tip does not touch the 
element boundary.  However,  the adopted branch  
 
 
 
 
 
 
 
 
 
Figure 1. A real traction-free crack terminating in a fracture 
process (cohesive) zone (FPZ) with residual stress transfer ca-
pacity σy(w) whose faces close smoothly near its tip (KI = 0). 
The material outside the FPZ is linear elastic, but within the 
FPZ is softening. 
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ABSTRACT: This paper discusses the crack tip asymptotic fields of frictionless and frictional cohesive 
cracks in quasi-brittle materials. This has been made possible after reformatting the cohesive-law into a spe-
cial but universal polynomial. For accurate simulation of crack growth in quasi-brittle materials using the ex-
tended/generalized finite element method (XFEM), the leading term of the true displacement asymptotic field 
is used as the enrichment function at the tip of a cohesive crack. The opening component of the same field is 
also used as the initial guess opening profile of a newly extended cohesive segment. A statically admissible 
stress recovery (SAR) technique is used to recover the stresses at the crack tip. Finally, a pure mode I cohe-
sive crack problem is analysed to demonstrate the characteristics of global responses and local fields obtained 
numerically by the XFEM. 
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function does not represent the true asymptotic na-
ture of the displacement/stress field adjacent to the 
cohesive crack tip. Hansbo and Hansbo (2004) mod-
elled strong and weak discontinuities in solid me-
chanics by considering an element traversed by a 
discontinuity as a double element each half of which 
is used for the interpolation of one side of the dis-
continuity. This approach is difficult to use when the 
discontinuity ends within an element. Zi and Be-
lytschko (2003) enriched all cracked linear3-node or 
quadratic 6-node triangular elements including the 
elements containing the crack tip by the sign func-
tion. Alfaiate et al. (2003) embedded displacement 
jumps which do not need to be homogeneous within 
each FE. Mariani and Perego (2003) introduced in a 
standard FE model a cubic displacement discontinu-
ity, in order to reproduce the typical cusp-like shape 
of the process zone at the tip of a cohesive crack. 
However, this cubic function does not represent the 
true angular distribution of the displacement adja-
cent to the tip. 

The lack of any work on the asymptotic fields at 
the tip of a cohesive crack is surprising considering 
the widespread use of cohesive crack models. This 
blank has been recently filled by Xiao and Karihaloo 
(2006b) who obtained universal asymptotic expan-
sions at a cohesive crack tip, analogous to Williams 
expansions at a traction-free crack tip. Coulomb fric-
tion on the cohesive crack faces is also considered. 
The coefficients of the expansions of course depend 
nonlinearly on the softening-law and the boundary 
conditions. These universal expansions are valid for 
any normal cohesion-separation law (i.e. softening 
law) that can be expressed in a special polynomial 
form. They demonstrated that many commonly-used 
cohesion-separation laws, e.g. rectangular, linear, bi-
linear and exponential, can be expressed in this spe-
cial form.  

In this paper, we will summarize the reformulated 
polynomial softening-law and the crack tip asymp-
totic fields of frictionless and frictional cohesive 
cracks in quasi-brittle materials given by Xiao and 
Karihaloo (2006b). We will use the leading term of 
the true displacement asymptotic field at the tip of a 
cohesive crack as the enrichment function in the 
XFEM. The opening component of the same field is 
also used as the initial guess opening profile of a 
newly extended cohesive segment. The tip of the 
growing cohesive crack does not have to terminate 
on an element boundary. 

Rubinstein (2003) has shown that relatively small 
errors in the determination of the crack path deflec-
tion angle can lead to a significant cumulative devia-
tion of the crack path over a finite crack length. 
Therefore a reliable analysis of cohesive crack 
propagation requires an accurate knowledge of the 
crack tip field. In order to obtain accurate angular 
distribution of the stress adjacent to the crack tip, a 
statically admissible stress recovery (SAR) scheme 

(Xiao & Karihaloo 2004, 2006a, Xiao et al. 2007) 
will be adopted. SAR uses basis functions, which 
meet the equilibrium equations within the domain 
and the local traction conditions on the boundary, 
and moving least squares (MLS) to fit the stresses at 
sampling (e.g., quadrature) points obtained by the 
XFEM. The most widely used stress recovery 
scheme (denoted as AVG) will also be used for 
comparison. AVG simply averages the stress values 
at each node evaluated from adjacent elements by 
bi-linear extrapolation from the Gauss points, and 
interpolates the averaged stresses using shape func-
tions. 

We will analyse a notched flexural specimen 
made of quasi-brittle materials with a bilinear law 
and show that the growth of a cohesive crack in a 
quasi-brittle material can be accurately predicted 
with a very coarse mesh which is not possible with 
the FEM. We will also demonstrate the characteris-
tics of global responses and local fields obtained 
numerically by the XFEM. 

2 POLYNOMIAL COHESIVE LAW FOR 
QUASI-BRITTLE MATERIALS 

In order to obtain the separable asymptotic field at a 
cohesive crack tip (in terms of r and θ functions, r 
and θ are local polar coordinates centered at the tip, 
see Fig. 1) in quasi-brittle materials like concrete, 
Xiao and Karihaloo (2006b) reformulated the soften-
ing law into the following polynomial 
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or in normalized form 
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where σ and ft are the stress normal to the cohesive 
crack face and the uniaxial tensile strength, respec-
tively; w and wc are the opening displacement of the 
cohesive crack faces, and the critical opening dis-
placement of the pre-existing macrocrack tip when it 
begins to grow; αi, i = 1 ∼ 5, are fitting parameters. 
Relation (1) or (2) can represent a wide variety of 
softening laws. 

For example, the widely used linear softening law 

ct w
w

f
−= 1σ  (3) 

can be represented by (1) with the only non-
vanishing coefficients α1 = -0.2612, α2 = -1.0215, 
i.e. 
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The correlation coefficient is 1. The linear law (3) is 
compared with (1) or (4) in Fig. 2; they cannot be 
distinguished on the scale of the figure. 



0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
w /w c

σ
/f t

Linear cohesive
law (3)
Polynomial (1)
or (2)

 
Figure 2. Linear tension-softening law. 

 
 
 
 
 
 
 
 
 
 

Figure 3. Bilinear tension-softening law. 
 
 
Similarly, for the widely used bilinear tension-

softening law (Fig. 3) 
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( tfff 11̂ = , cwww 11ˆ = ), its two linear parts can be rewrit-
ten into two linear laws as shown in Fig. 3. The first 
part can be written into (4) using a new definition of 
wc as 
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The second part can be written into (4) using a new 
definition of ft as 
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Cornelissen et al. (1986) introduced the following 
exponential relation 
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C1 and C2 are fitting parameters. For a normal con-
crete (NC) with density 2370 kg/m3, compressive 
strength fc = 47 MPa, Young modulus E = 39 GPa, ft 
= 3.2 MPa, wc = 160 μm, specific fracture energy GF 
= 100 J/m2 (area under the tension-softening curve), 
C1 = 3 and C2 = 6.93. This diagram can also be fitted 
by (1) with α1 = -0.872, α2 = -16.729, α3 = 67.818, 
α4 = -110.462, and α5 = 83.158. The correlation co-
efficient is 1. They are compared in Fig. 4, and can-
not be distinguished on the scale of the figure. 

Wecharatana (1990) introduced the following sof-
tening relationship 

1ˆˆ 2 =+ mm wσ  (9) 
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Figure 4. Cohesive law (8). 
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Figure 5. Cohesive law (9). 

 
 

m = 0.27 for concrete with compressive strength fc = 
24 MPa. In the range of 0 ≤ ŵ  ≤ 0.6, we can fit (9) 
using (1) with α1 = -6.9495, α2 = 29.9794, α3 = -
87.2663, α4 = 148.3647, and α5 = -128.84. The cor-
relation coefficient is 1. When ŵ  = 0.6, σ̂  = 
0.005148; when ŵ  > 0.6, σ̂  is negligibly small. As 
compared in Fig. 5, they cannot be distinguished on 
the scale of the figure. 

3 CRACK TIP ASYMPTOTIC FIELDS OF 
FRICTIONLESS AND FRICTIONAL 
COHESIVE CRACKS IN QUASI-BRITTLE 
MATERIALS 

Muskhelishvili (1953) showed that, for plane prob-
lems, the stresses and displacements in the Cartesian 
coordinate system (see Fig. 1) can be expressed in 
terms of two analytic functions φ(z) and χ(z) of the 
complex variable z = reiθ 
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where a prime denotes differentiation with respect to 
z and an overbar complex conjugate. In (10), 

[ ])1(2 νμ += E  is the shear modulus; the Kolosov con-
stant is νκ 43−= for plane strain or ( ) ( )ννκ +−= 13  for 
plane stress. 

For a general plane mixed mode I + II problem, 
the complex functions φ(z) and χ(z) can be chosen as 
series of complex eigenvalue Goursat functions (Sih 
& Liebowitz 1968, Karihaloo & Xiao 2003a) 
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where the complex coefficients are An = a1n + ia2n 
and Bn = b1n + ib2n. The eigenvalues λn and coeffi-
cients a1n, a2n, b1n and b2n are real. 

The asymptotic analysis of the crack tip fields 
needs to satisfy the proper symmetry conditions 
along the line of extension of the cohesive crack, 
and boundary conditions on the cohesive crack 
faces. 

If normal cohesive separation applies to the crack 
faces, relationship (1) needs to be satisfied over the 
cohesive zone. The stresses at the cohesive crack tip 
are non-singular (because the stress intensity factor 
KI = 0). Moreover, the following conditions need to 
be satisfied: 
(a) if the Coulomb friction on the crack face is con-
sidered 
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where μf equals the positive or negative value of the 
coefficient of kinetic friction, which is assumed to 
be constant, depending on the relative sliding direc-
tion of the two crack faces: μf > 0 when relative slid-
ing δ > 0 and μf < 0 when δ < 0. When μf = 0, the 
cohesive crack faces are frictionless. 
(b) if the cohesive crack faces are in pure mode I 
condition 
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The length of the process (cohesive) zone is de-
termined by the condition w ≤ wc in the normally 
opened part of the crack. 

For a Coulomb frictional cohesive crack with 
normal cohesive separation (1), the complete asymp-
totic solutions are composed of two parts. The first 
part corresponds to integer eigenvalues 
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since ty f=
±= πθ

σ  when r → 0. These solutions have 
non-zero σy and τxy along the cohesive crack faces, 
but zero crack opening w and sliding δ. The second 
part of the asymptotic solutions corresponds to non-
integer eigenvalues 
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Consider the truncated N + 1 terms of ŵ  (18), 
and denote 00 dd = , 0ddd nn =  (n > 1) 
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The expansion of ŵ  (19) raised to the power 
2i/3 is also truncated to N + 1 terms, since these 
terms include only the truncated N + 1 terms of ŵ . 
Hence 
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and ( ) ( )0n
if  denotes the nth derivative at r = 0. The 

first five coefficients βin are 
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If we choose N = 5, then after satisfying the cohe-
sive relationship (1) we have the following expres-
sions for coefficients cn in (16) 
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For non-integer eigenvalues (17), the coefficients 
a1n and a2n may be regarded as independent, so that 
coefficients b1n are linearly dependent on a1n and b2n 
on a2n. For integer eigenvalues (14), coefficients a1n 
and a2n may also be regarded as independent, so that 
coefficients b2n now depend linearly on a1n, a2n and 
b1n. However, the coefficients b1n for integer eigen-
values will depend both linearly on a1n for integer 
eigenvalues and nonlinearly on a1n for non-integer 
eigenvalues via (16), (18), (19), (21) and (23). The 
inherent nonlinear nature of the problem is reflected 
in these nonlinear relationships between the coeffi-
cients of the asymptotic fields. 

Note that the above asymptotic solution cannot be 
reduced to a pure mode I cohesive crack (compare 
(12) and (13)), since along the line of extension of 
the crack, θ = 0, the shear stress does not vanish (τxy 
≠ 0). However, the procedures are similar; and the 
complete asymptotic fields have been given by Xiao 
and Karihaloo (2006b). The first term corresponding 
to a non-integer eigenvalue that gives a normal dis-
placement discontinuity over the cohesive crack 
faces is 
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4 SIMULATION OF COHESIVE CRACK 
GROWTH IN QUASI-BRITTLE MATERIALS 
USING XFEM 

To model the cohesive cracks in the XFEM, a stan-
dard local FE displacement approximation around 
the crack is enriched with discontinuous Heaviside 
functions along the crack faces behind the crack tip 
including the open traction-free part, and the crack 

tip asymptotic displacement fields at nodes sur-
rounding the cohesive crack tip using the PU. The 
approximation of displacements for an element can 
be expressed in the following form 
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where I is the set of all nodes in the element, (u0i, v0i) 
are the regular degrees of freedom at node i, φi is the 
FE shape function associated with node i, J is the 
subset of nodes whose support is intersected by the 
crack but do not cover any cohesive crack tips, the 
function H(x) is the Heaviside function centred on 
the crack discontinuity, and (b1j, b2j) are the corre-
sponding additional degrees of freedom. Mk is the 
subset of nodes that are enriched around the cohe-
sive crack tip k with the asymptotic displacements 
u(tip k) and v(tip k). ( )ktip

mu   and ( )ktip
mv   are enrichment 

functions adopted at node m with corresponding 
nodal parameters independent of other nodes. 

Consider a domain Ω containing a crack Γc, as 
shown in Fig. 6. The boundary Γ is composed of the 
segments Γu, Γt, and Γc. The part of the crack on 
which a softening law is active, i.e. the FPZ, is de-
noted by Γcoh. Prescribed displacements u are im-
posed on Γu, while tractions F are imposed on Γt. 
The crack surface Γc excluding Γcoh is assumed to be 
traction-free. The cohesive tractions t+, t- are im-
posed on the upper and lower surfaces of Γcoh. 

The virtual work equation without body forces is 
given by Wells and Sluys (2001) and Moës and Be-
lytschko (2002) 

∫∫∫ ΓΓΩ
Γ⋅=Γ⋅+Ω∇

tcoh    
d dd vFvwtvu s )(:)(σ  (26) 

where σ is the Cauchy stress, and s∇  denotes the 
symmetric part of the gradient operator. The dis-
placements u must belong to the space U of kine-
matically admissible displacement fields 

{ }cuUU ΓΓ=∈=∈ on  ousdiscontinu  ,on  : uuuuu  (27) 

where the space U is related to the regularity of the 
solution.  The test function  v  must belong to the  

 
 
 
 
 
 
 
 
 
 
 

Figure 6. Body with a crack Γc involving a cohesive zone Γcoh 
subjected to prescribed boundary tractions F on Γt and dis-
placements u on Γu. 
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space V defined by 

{ }cuVV ΓΓ=∈=∈ on  ousdiscontinu  ,on  0: vvvv  (28) 

The cohesive tractions t = t+ = −t− and the separa-
tion w(v) = v−−v+ are related by a softening law on 
Γcoh. 

For a softening law composed of linear segments, 
equation (26) can be solved using a secant modulus 
iteration scheme when the length of the cohesive 
zone and external loads are given. The term secant 
modulus here refers to the fact that the stiffness ma-
trix of XFEM obtained from (26) relates directly the 
total displacements to loads. Displacements (24) are 
used as the crack tip enrichment function in (25) for 
a mode I cohesive crack. The unknown coefficient 
a1 depends on the softening law, and boundary and 
load conditions. It is considered as additional de-
grees of freedom at relevant enrichment nodes in 
XFEM. Details of the implementation of XFEM, 
SAR, and simulation of cohesive crack growth can 
be found in Xiao et al. (2007). 

5 ILLUSTRATION OF THE MODE I COHESIVE 
CRACK TIP FIELDS 

In order to visualise the cohesive crack tip fields de-
rived in Section 3, it is necessary to determine the 
unknown coefficients by fitting the numerically 
computed crack tip fields with the theoretically ob-
tained fields. This requires a sophisticated optimiza-
tion scheme. For the present purpose of illustration, 
we will solve a mode I cohesive crack problem 
shown in Fig. 7 using the obtained asymptotic fields 
and the numerically computed opening profile of the 
cohesive crack. 

We consider the subdomain bounded by broken 
lines in Fig. 7, and assume the length of the cohesive 
crack is 10.5 mm. The opening profile of the cohe-
sive crack (Fig. 8) adopts the computed results of a 
three point bend beam with a very small initial crack 
of length 0.1mm at the bottom midpoint of the beam 
(Fig. 9) at the loading stage with total cohesive crack 
= 31.5mm and load/(ftbt) = 0.228 (Xiao & Karihaloo 
2006b). The geometrical parameters are b = 150 
mm, l = 4b,  t = b (t is the specimen thickness in the  

 
 

 
 
 
 
 
 
 
 
 
Figure 7. Illustration of the cohesive crack problem. 

out-of-plane direction). A linear softening law and a 
state of plane strain condition are considered. The 
material properties are E = 36.5 GPa, ν = 0.1, ft = 
3.19MPa, GF = 50 N/m. The dimensions for force 
and length are N and mm, respectively. 
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Figure 8. Opening profile of the cohesive crack. 

 
 
 
 
 
 
 
 
 
 

Figure 9. A three-point bend beam (TPB). 
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Figure 10. Non-vanishing displacements and stresses along the 
line of extension of the cohesive crack (θ = 0). 
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Figure 11. Displacements and stresses along the circle r = 0.5. 

 
 
The displacements and stresses along the line of 

extension of the cohesive crack and the circle with 
radius r = 0.5 mm surrounding the crack tip are plot-
ted in Figs. 10 and 11. As expected, the stress σy at 
the cohesive crack tip is equal to ft, and no stress at 
any other locations reaches ft. 

6 NUMERICAL EXAMPLE 

In this section, we will analyse an edge cracked plate 
under uniaxial tension (Fig. 12). The geometrical pa-
rameters are b = 150 mm, l = 4b, t = b. A state of 
plane strain condition is considered. The initial edge 
crack has a length of a0 = 15.1mm. The properties E 
= 36.9 GPa, ν = 0.2, and a bilinear softening law (5) 
with ft = 3.14 MPa, f1 = 0.455 MPa, wc = 0.279 mm, 

w1 = 0.0373 mm, GF = 122 N/m, obtained by Ab-
dalla and Karihaloo (2004) for a real normal strength 
concrete are used. 

Two meshes, as shown in Fig. 13, are used in the 
analysis. The coarser mesh consists of 50×100 = 
5000 rectangular elements, giving a total of 5151 
nodes. The finer mesh consists of 150×120 = 18000 
rectangular elements, giving a total of 18271 nodes. 
Both meshes are uniformly divided in x-direction. 
For the coarser mesh, the central 50 layers of ele-
ments have an identical height (y-direction) of 3mm; 
the remaining elements have an identical height of 
9mm. Therefore, elements in the central zone are 
3×3 mm2 squares. For the finer mesh, the central 60 
layers of elements have an identical height of 1mm; 
the remaining elements have an identical height of 
9mm. Therefore elements in the central zone are 1×1 
mm2 squares. We will study global responses includ-
ing the load – deformation behaviour and the evolu-
tion of the cohesive zone, as well as local properties 
including the opening profile and distribution of the 
cohesive stress in the cohesive zone, and displace-
ments and stresses along the circle r = 3.5mm (the 
second layer of elements in the coarser mesh, or the 
fourth layer of elements in the finer mesh) around 
the crack tip and along the line of extension of the 
crack. The intention of using two meshes is to study 
the mesh size sensitivity of the global responses as 
well as of the crack tip fields. Furthermore, the re-
sults from the finer mesh will be used as a reference 
solution, since no analytical solutions are available. 
The conventional 4-node bilinear isoparametric Q4 
elements are used as background elements. The po-
tential fracture locus coincides with the specimen’s 
axis of symmetry. The crack is modelled by enrich-
ing the nodes on the crack faces with jump without 
the double nodes that are used in the traditional 
FEM. 

The first layer of nodes surrounding the cohesive 
crack tip are enriched with (24). The opening com-
ponent of the same field is also used as the initial 
opening profile of a newly extended cohesive seg-
ment in the simulation of cohesive crack propaga-
tion. 

Similar to Moës and Belytschko (2002), x-
direction of nodes with coordinates (0, 0) and (0, 
600mm) and y-direction of the node with coordi-
nates (150mm, 300mm) are constrained; the load is 
distributed over a length of 6mm for the coarse mesh 
and 2mm for the fine mesh (two elements). 

 
 
 
 
 
 
 
 

Figure 12. An edge-cracked plate under uniaxial tension. 
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Figure 13. Coarse (a) and fine (b) mesh for the left half of the 
specimen. 

 
 
In the simulation, the first increment of the cohe-

sive crack is 4.4mm, then the cohesive crack propa-
gates by a segment of length 3mm after each step in 
the coarser mesh, and by three segments of length 
1mm each in the finer mesh. 

The stresses at the tip of the cohesive crack re-
covered by SAR are used to judge whether or not the 
tip will propagate. 

The stresses for the finer mesh recovered by 
AVG and SAR are identical along the circle r = 
3.5mm and the line of extension of the crack. There-
fore, all stress results presented below are for the 
coarser mesh, unless otherwise mentioned. 

The dimensions of the displacement and length 
parameters are in mm, and those of the stresses in 
MPa. 

The variation of the tensile stress σy and dis-
placement v in y-direction at the central point of the 

loading edge is shown in Fig. 14. Obviously, it 
shows no mesh dependency. The evolution of the 
size of the cohesive zone corresponding to the two 
branches of the bilinear softening law (5) is shown 
in Fig. 15. It also reveals very weak mesh depend-
ence. The opening profile and distribution of cohe-
sive stresses in the cohesive zone are shown in Fig. 
16, and show some weak mesh dependence. Non-
vanishing displacements and stresses along the circle 
r = 3.5mm, and the line of extension of the crack at 
loading stages A are plotted in Figs 17 and 18. The 
displacements on r = 3.5mm from the coarser mesh 
agree quite well with the finer mesh. The stresses for 
the coarser mesh obtained by SAR are more accurate 
than the direct differentiation and AVG, and agree 
quite well with the finer mesh. Along the line of ex-
tension of the crack, the displacement u in x-
direction is very sensitive to the mesh size, however 
the remaining non-vanishing displacement and stress 
components are not. The agreement between AVG, 
SAR and the finer mesh is generally very good, 
however, SAR is better than AVG close to the cohe-
sive crack tip. 

Note that close to the cohesive crack tip, the 
maximum values of the main stresses σx and σy oc-
cur on the cohesive crack face. This feature of the 
stress distribution has also been noticed by Planas et 
al. (2003). 
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Figure 14. The non-dimensional tensile stress-central extension 
curves of the uniaxial single-edge notched tension plate. 
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Figure 15. Evolution of the cohesive zone size as the cohesive 
tip travels through the plate. (1) and (2) correspond to the first 
and second branches of the bilinear softening diagram (Fig. 3). 
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Figure 16. Opening profile and distribution of cohesive stresses 
in the FPZ at typical loading stages (Fig. 14). 

 
 
The use of the enrichment function in the XFEM 

has been noticed to deteriorate the condition of the 
discrete system (Strouboulis et al. 2001). This does 
not affect global responses or the stresses and the 
strain energy. However, it may affect significantly 
the displacements adjacent to the tip of the cohesive 
crack, so that a direct comparison of the coarse and 
fine mesh patterns (Fig. 13) adopted in the analysis 
is not possible. Hence, we compare instead the dis-
placements relative to the tip of the cohesive crack. 

7 DISCUSSION AND CONCLUSIONS 

The complete asymptotic expansions for frictionless 
and frictional cohesive cracks are analogous to the 
Williams expansions in brittle solids. They are valid 
for many commonly used separation laws, e.g. rec-
tangular, linear, bilinear, exponential, etc with or 
without Coulomb friction on crack faces. 

Global responses like load – deformation curves, 
and evolution of the cohesive zone, are not sensitive 
to the size of the adopted mesh in the XFEM. Local 
properties like the opening profile and distribution of 
the cohesive stresses in the cohesive zone, especially 
crack tip displacements and stresses are more sensi-
tive to the mesh size. 

Although no singularity exists at the tip of a co-
hesive crack, the stresses obtained by direct differen-
tiation of the displacements are not accurate, and 
cannot be used to predict accurately the growth of 
the tip. The SAR, which satisfies exactly the non-
homogeneous cohesive tractions, gives more accu-
rate results than the widely used AVG adjacent to 
the crack tip. If high accuracy of the local fields is 
required (e.g. these fields are use to judge the growth  
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Figure 17. Non-vanishing displacements and stresses along the 
circle r = 3.5mm at loading stage A (Fig. 14). 

 
 

of the tip), a relatively fine mesh needs to be used 
together with accurate stress recovery methods, such 
as SAR. 

For mode I cohesive cracks, the stresses recov-
ered by SAR are highly accurate along the line of 
extension of the cohesive crack, and can be used di-
rectly to predict the growth of the crack. For general 
mixed-mode cracks, further studies are required on 
whether the SAR stresses at the tip, or on a small 
circle enclosing a few (e.g. one or two) layers ele-
ments around the tip should be used to predict the 
growth of the crack. 
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Figure 18. Non-vanishing displacements and stresses along the 
line of extension of the crack at loading stage A (Fig. 14). 
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